欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 789-794.doi: 10.3724/SP.J.1006.2017.00789

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻组织特异型人工合成启动子的设计、构建及功能鉴定

王睿1,2,朱梦琳1,高方远2,任鄄胜2,陆贤军2,任光俊2,林拥军1,*   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉 430070;2四川省农业科学院作物研究所,四川成都 610066
  • 收稿日期:2016-11-05 修回日期:2017-03-01 出版日期:2017-06-12 网络出版日期:2017-03-24
  • 通讯作者: 林拥军,E-mail: yongjunlin@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2014ZX08001001)和国家高技术研究发展计划(863计划)项目资助。

Designing, Construction and Functional Characterization of Tissue-specific Synthetic Promoter in Rice

WANG Rui1,2,ZHU Meng-Lin1,GAO Fang-Yuan2,REN Juan-Sheng2,LU Xian-Jun2,REN Guang-Jun2,LIN Yong-Jun1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2016-11-05 Revised:2017-03-01 Published:2017-06-12 Published online:2017-03-24
  • Contact: Lin Yongjun,E-mail: yongjunlin@mail.hzau.edu.cn
  • Supported by:

    This study was supported by the National Major Project for Developing New GM Crops (2014ZX08001001) and the National High Technology Research and Development Program of China (863 Program)a.

摘要:

合成启动子是合成生物学的一个重要研究领域及研究热点。水稻是世界上最重要的粮食作物之一,亦是禾本科作物功能基因组研究的模式植物。本研究旨在对水稻组织特异表达启动子的合成作有益尝试。根据已发表的文献选取了一些与组织特异表达相关的顺式元件,将它们以不同的方式组合并连接Mini 35S核心启动子以驱动GUS报告基因的表达。转基因水稻的GUS组织化学染色和酶活测定结果证实通过上述方法在水稻中成功构建出组织特异型合成启动子,同时也揭示了顺式元件在合成启动子中不同的组合方式对启动子的表达活性和表达模式起着关键作用。本研究为植物合成启动子的设计思路和构建方法提供了有益信息和实践基础。

关键词: 水稻, 合成启动子, GUS报告基因, 顺式调控元件

Abstract:

As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. Rice is one of the most important food crops in the world and a model plant for functional genomic research in cereals. The purpose of the present study was to design and construct tissue-specific synthetic promoters in rice. We selected several tissue-specific cis-elements based on previous reports and assembled them in different patterns. The combinations were respectively fused to Mini 35S promoter. GUS assays of the transgenic plants indicated that our work successfully created tissue-specific synthetic promoter with the above approach and also revealed that the assembly patterns of cis-elements are critical for the expression patterns and expression efficiencies of synthetic promoters. Our study provides useful information and a practical basis for the design ideas and construction approaches of synthetic promoters in plants.

Key words: Rice, Synthetic promoter, GUS reporter gene, cis-element

[1] Cai M, Wei J, Li X, Xu C, Wang S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol J, 2007, 5: 664–674 [2] 扆珩, 李昂, 刘惠民, 景蕊莲. 小麦蛋白磷酸酶2A基因TaPP2AbB’’-α启动子的克隆及表达分析. 作物学报, 2016, 42: 1282–1290 Yi H, Li A, Liu H M, Jing R L. Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB’’-α promoter in wheat. Acta Agron Sin, 2016, 42: 1282–1290 (in Chinese with English abstract) [3] 习雨琳, 周朋, 宋梅芳, 李志勇, 孟凡华, 杨建平. 拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价. 作物学报, 2012, 38: 1561–1569 Xi Y L, Zhou P, Song M F, Li Z Y, Meng F H, Yang J P. Expression patterns of Arabidopsis RBCS-1A gene in response to light treatments and application evaluation of its promoter in transgenic engineering. Acta Agron Sin, 2012, 38: 1561–1569 (in Chinese with English abstract) [4] Yim S S, An S J, Kang M, Lee J, Jeong K J. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng, 2013, 110: 2959–2969 [5] Rytter J V, Helmark S, Chen J, Lezyk M J, Solem C, Jensen P R. Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2014, 98: 2617–2623 [6] Sohoni S V, Fazio A, Workman C T, Mijakovic I, Lantz A E. Synthetic Promoter Library for modulation of actinorhodin production in Streptomyces coelicolor A3 (2). PloS One, 2014, 9: e99701 [7] Dai J, Zhang Q, Liu S, Zhang M, Ren X, Hao L, Jiang Q, Zhang Y. The combination of a synthetic promoter and a CMV promoter improves foreign gene expression efficiency in myocytes. J Biotechnol, 2012, 158: 91–96 [8] Kang W, Kwon J, Kim H, Jeong H, Kang H, Jeong M, Cho J, Park J, Kim Y, Ahn Y. A macrophage-specific synthetic promoter for therapeutic application of adiponectin. Gene Ther, 2014, 21: 353–362 [9] Rushton P J, Reinstadler A, Lipka V, Lippok B, Somssich I E. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002, 14: 749–762 [10] Roychoudhury A, Sengupta D. The promoter-elements of some abiotic stress-inducible genes from cereals interact with a nuclear protein from tobacco. Biol Plant, 2009, 53: 583–587 [11] Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl D J, Hehl R. Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol, 2012, 160: 178–191 [12] Liu W, Mazarei M, Rudis M R, Fethe M H, Peng Y, Millwood R J, Schoene G, Burris J N, Jr Stewart C N. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. Plant Biotechnol J, 2013, 11: 43–52 [13] Liu W, Mazarei M, Peng Y, Fethe M H, Rudis M R, Lin J, Millwood R J, Arelli P R, Jr Stewart C N. Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters. Plant Biotechnol J, 2014, 12: 1015–1026 [14] Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92–100 [15] Pan Y, Deng Y, Lin H, Kudrna D A, Wing R A, Li L, Zhang Q, Luo M. Comparative BAC-based physical mapping of Oryza sativa ssp. indica var. 93-11 and evaluation of the two rice reference sequence assemblies. Plant J, 2014, 77: 795–805 [16] Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79–92 [17] Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J, 2010, 61: 752–766 [18] Ye R, Zhou F, Lin Y. Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L. ssp.). Plant Cell Rep, 2012, 31: 1159–1172 [19] Wang R, Zhu M, Ye R, Liu Z, Zhou F, Chen H, Lin Y. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice. Sci Rep, 2015, 5: 18256 [20] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282 [21] Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35: 418–427 [22] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254 [23] Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep, 2010, 29: 1061–1068 [24] Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schl?ppi M R, Chu C. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet, 2011, 7: e1002196 [25] Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132 [26] Zhu L, Hu J, Zhu K, Fang Y, Gao Z, He Y, Zhang G, Guo L, Zeng D, Dong G, Yan M, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011, 77: 475–487 [27] Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055 [28] Yang Z, Chen H, Tang W, Hua H, Lin Y. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci, 2011, 67: 414–422 [29] Wang R, Lu L, Pan X, Hu Z, Ling F, Yan Y, Liu Y, Lin Y. Functional analysis of OsPGIP1 in rice sheath blight resistance. Plant Mol Biol, 2015, 87: 181–191

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!