欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 974-982.doi: 10.3724/SP.J.1006.2017.00974

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析

周可1,**,李燕1,2,**,王世明1,崔国庆1,杨正林1,何光华1,凌英华1,赵芳明1,*   

  1. 1 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室,重庆400716; 2 贵州省茶叶研究所,贵州贵阳550006
  • 收稿日期:2016-11-25 修回日期:2017-03-01 出版日期:2017-07-12 网络出版日期:2017-03-27
  • 通讯作者: 赵芳明, E-mail: zhaofangming2004@163.com, Tel: 023-68250486
  • 基金资助:

    本研究由国家重点研发计划项目(SQ2016ZY03001818)的“水稻杂种优势利用创新技术研究”课题(2016YFD0101107)和重庆市重点实验室能力提升项目(cstc2014pt-sy80001)资助。

Identification of Rice Chromosome Segment Substitution Line Z519 with Purple Sheath and Candidate Gene Analysis of PSH1

ZHOU Ke1,**,LI Yan1,2,**,WANG Shi-Ming1,CUI Guo-Qing1,YANG Zheng-Lin1,HE Guang-Hua1,LING Ying-Hua1,ZHAO Fang-Ming1,*   

  1. 1 Rice Research Institute, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China; 2 Tea Research Institute of Guizhou Province, Guiyang 550006, China
  • Received:2016-11-25 Revised:2017-03-01 Published:2017-07-12 Published online:2017-03-27
  • Contact: Zhao Fangming, E-mail: zhaofangming2004@163.com, Tel: 023-68250486
  • Supported by:

    The research was supported by subject “New Technology of Heterosis Utilization in Rice” (2016YFD0101107) in the National Key Research and Development Program (SQ2016ZY03001818), and Chongqing Key Laboratory Capacity Improvement Project (cstc2014pt-sy80001).

摘要:

植物色素,在食品加工、杂种纯度鉴定中具有重要的作用。本研究鉴定了一个以日本晴为受体、优良紫鞘恢复系R225为供体亲本的紫鞘水稻染色体代换片段系Z519。Z519共含有16个代换片段,分布于除第10染色体外的其他11条染色体,平均长度为6.85 Mb。Z519在芽鞘3 mm时鞘尖呈现紫色,其后在叶鞘、叶缘、茎维管束和柱头等部位出现紫色线条,而日本晴各部位均为绿色。Z519叶鞘中花青素含量极显著高于日本晴,剑叶中没有显著差异。与受体日本晴相比,Z519的株高显著降低,千粒重、主穗总粒数和实粒数显著增加,有效穗数、主穗长和结实率无显著差异。进一步以日本晴与Z519杂交产生的F1和F2隐性群体对紫鞘基因进行了遗传分析和分子定位。该紫鞘表型受显性单基因控制,位于第1染色体InDel标记L03和SSR标记L01之间37.8 kb的区域,被命名为PSH1。对该区间进行候选基因预测和测序,Z519在一个编码质体ATP/ADP转运蛋白的LOC_Os01g45910基因第一外显子的第238~252的GTG重复区又多插入了GTG 3个碱基,导致增加了一个甘氨酸。qRT-PCR结果进一步表明其表达量在Z519中明显降低,初步确定LOC_Os01g45910是PSH1的候选基因。该研究为PSH1调控花青素的分子机制奠定了良好基础。

关键词: 水稻, 染色体片段代换系, 紫鞘PSH1, 基因定位

Abstract:

Anthocyanins as plant pigments are widely liked by people and play a very important role in food processing and hybrid purity identification. Here, a rice chromosome segment substitution line (CSSL) Z519 with purple sheath was identified deriving from recipient Nipponbare and donor R225. Z519 contained 16 substitution segments with 6.85 Mb of average length, which were distributed on 11 chromosomes of rice except the 10th chromosome. The bud sheath of Z519 began to appear the purple color stripes when it was about 3 mm long. Then the purple stripes displayed on sheaths, leaf margins, vascular bundles of stem and stigmas. While all parts of Nipponbare were green. Anthocyanin content in leaf sheath of Z519 was significantly higher than that of Nipponbare, whereas no significant difference was in flag leaf. Compared with Nipponbare, plant height of Z519 was significantly decreased, spikelets number and grain number of main panicle, and 1000-grain weight of Z519 were significantly increased. There was no significant difference between Z519 and Nipponbare in the other traits such as panicle number, main panicle length and seed-setting rate. Then, F2 recessive populations from the cross of Nipponbare and Z519 were used for genetic analysis and gene mapping of the purple sheath. The purple sheath in Z519 was controlled by a single dominant gene, named as PSH1, which was mapped on the chromosome 1 between InDel marker L03 and SSR marker L01 with the physical distance of 37.8 kb. By sequencing and gene-predicting in the region, Z519 had three bases (GTG) insertion in the GTG repeat area of the 238th?252th base in the first exon compared with Nipponbare, which resulted in increasing a Gly amino acid. Furthermore, the expression of LOC_Os01g45910 was obviously decreased in Z519 by qRT-PCR analysis. Thus, LOC_Os01g45910 was preliminary identified as the candidate gene of PSH1. The results lay a good foundation for studying molecular mechanisms of regulating anthocyanin by PSH1.

Key words: Rice (Oryza sativa L.), Chromosome segment substitution line (CSSL), Purple sheath PSH1, Gene mapping

[1]唐忠厚, 周丽. 花青素对人类健康影响的研究进展及其前景. 食品研究与开发, 2009, (7): 159–162 Tang Z H, Zhou L. Study on anthocyanins influencing on human health and its prospect. Food R&D, 2009, (7): 159–162 (in Chinese with English abstract) [2]Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071–1083 [3]Austin M B, Noe L J P. The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep, 2003, 20: 79–110 [4]Yamazaki M, Nakajima J, Yamanashi M, Sugiyama M, Makita Y, Springob K, Awazuhara M, Saito K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perillafrutescens. Phytochemistry, 2003, 62: 987–995 [5]Bogs J, Ebadi A, McDavid D, Robinson P. Identification of the flavonold hydroxylases from grapevine and their regulation during fruit development. Plant Physiol, 2006, 140: 279–291 [6]Jeong S T, Goto-Yamamoto N, Hashizume K, Esaka M. Expression of the flavonoid 3'-hydroxylase and flavonoid 3', 5' -hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci, 2006, 170: 61–69 [7]Castellarin S D, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A F, Testolin R. Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics, 2006, 7: 12 [8]Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci, 2005, 10: 63–70 [9]Xie D Y, Sharma S B, Wright E, Wang Z Y, Dixon R A. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J, 2006, 45: 895–907 [10]Gonzalez A, Zhao M Z, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedings. Plant J, 2007, 53: 814–827 [11]Grotewold E. The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta, 2004, 219: 906–909 [12]Pourcel L, Irani N G, Lu Y, Riedl K, Schwartz S, Grotewold E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant, 2010, 3: 78–90 [13]Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 395: 397–400 [14]Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104–114 [15]张毅. 水稻两个芽鞘紫线相关基因的图位克隆与应用研究. 西南大学博士学位论文, 重庆, 2009 Zhang Y. Map-based Cloning and Application Research of Two Coleoptile Purple Line Related Genes in Rice (Oryza sativa L.). PhD Dissertation of Southwest University, Chongqing, China, 2009 (in Chinese with English abstract) [16]Wang W Y, Ding H F, Li G X, Jiang M S, Li L F, Liu X, Zhang Y, Yao F Y. Delimitation of the PSH1(t) for rice purple leaf sheath to a 23.5 kb DNA fragment. Genome, 2009, 52: 268–274 [17]孙旭, 柳絮, 李润芳, 王文英, 姚方印, 刘开启. 水稻紫色叶鞘基因的遗传分析. 山东农业科学, 2009, (10): 22–24 Sun X, Liu X, Li R F, Wang W Y, Yao F Y, Liu K Q. Genetic analysis of gene for purple leaf sheath in rice. Shandong Agric Sci, 2009, (10): 22–24 (in Chinese with English abstract) [18]Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M. The purple leaf (pl) locus of rice: plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol, 2001, 42: 982–991 [19]赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1–7 Zhao F M, Guo C, Wei X, Yang Z L, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis beween Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1–7 (in Chinese with English abstract) [20]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S D, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181–197 [21]邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 27?29 Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agricultural Press, 2000. pp 27–29 (in Chinese) [22]于晓南. 植物叶片中花青素的分析与研究. 现代仪器, 2000, (4): 37–38 Yu X N. Analysis and study on anthocyanin in plant leaves. Modern Instruments, 2000, (4): 27–29 (in Chinese) [23]向佳, 李燕, 樊亚伟, 许军红, 郑丽媛, 何光华, 杨正林, 王楠, 赵芳明. 一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位. 作物学报, 2015, 41: 683–691 Xiang J, Li Y, Fan Y W, Xu J H, Zeng L Y, He G H, Yang Z L, Wang N, Zhao F M. Identification and morphological analysis of a rice chromosome segment substitution line carrying a major effect gene for late heading date and mapping of Ehd4-2. Acta Agron Sin, 2015, 41: 683–691 (in Chinese with English abstract) [24]Rogers S O, Bendich A J. Extraction of DNA from plant tissues. Plant Mol Biol, 1988, A6: 1–10 [25]Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying over lapping chromosome segments of indica rice cultivar “Kasalath” in a genetic background of japonica elite cultivar Koshihikari. Breed Sci, 2005, 55: 65–73 [26]Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang Z W, Lin H X, Ono N, Uga Y, Yano M. Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar “Nona bokra” and japonica recipient cultivar “Koshihikari”. Breed Sci, 2007, 57: 257–261 [27]熊振民. 中国水稻. 北京:中国农业科技出版社, 1992. pp 55–57 Xiong Z M. Rice in China. Beijing: China Agricultural Science and Technolegy Press, 1992. pp 55–77 (in Chinese) [28]黄碧光, 卢泳全. 杂交水稻V优77 色素与育性的遗传关系研究. 福建农业学报, 2002, 17(4): 215–216 Huang B G, Lu Y Q. Study on the heredity of color and fertility in rice. Fujian J Agric Sci, 2002, 17(4): 215–216 (in Chinese with English abstract) [29]邱振国. 籼S×H3后代叶缘、叶鞘、稃尖颜色遗传分析. 广东农业科学, 2006, (9): 39–40 Qiu Z G. Genetic analysis of the leaf margin, leaf sheath, and the color of lepta tip of Indica Rice S×H3. Guangdong Agric Sci, 2006, (9): 39–40 (in Chinese) [30]邓国富, 李杨瑞, 梁世荣, 陈仁天, 周萌, 高利军, 周维永, 戴高兴. 紫叶水稻IR1552紫叶性状的遗传及其育种利用. 杂交水稻, 2007, 22(5): 71–75 Deng G F, Li Y R, Liang S R, Chen R T, Zhou M, Gao L J, Zhou W Y, Dai G X. Genetics and breeding of purple leaf character of purple leaf rice IR1552. Hybrid Rice, 2007, 22(5): 71–75 (in Chinese with English abstract) [31]钱前, 唐绍清, 林建荣, 吕子同. 一种具有遗传特异性的紫叶稻及其在两系法杂交稻中的应用. 浙江农业学报, 1995, 7: 259–262 Qian Q, Tang S Q , Lin J R , Lyu Z T. A purple leaf rice CN -pl with genetic specificity and its utilization on two-line hybrid rice. Acta Agric Zhejiangensis, 1995, 7: 259–262 (in Chinese with English abstract) [32]谢国生, 蔡得田, 马平福, 祝虹. 水稻显性紫色基因的遗传分析. 湖北农业科学, 1997, 10(3): 3–5 Xie G S, Cai D T, Ma P F, Zhu H. Genetic analysis of dominant purple gene in Rice. Hubei Agric Sci, 1997, 10(3): 3–5 (in Chinese with English abstract) [33]牟同敏, 李春海, 杨国才, 卢兴贵. 紫叶水稻苗期叶色的遗传研究. 中国水稻科学, 1995, 9(1): 45–48 Mou T M, Li C H, Yang G C, Lu X G. Genetical studies on seedling leaf color of purple rice. Chin J Rice Sci, 1995, 9(1): 45–48 (in Chinese with English abstract) [34]Hu J P, Anderson B, Wessler S R. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics, 1996, 142: 1021–1031 [35]谢小东, 程廷才, 王根洪, 段军, 夏庆友. 植物ABC和MATE转运蛋白与次生代谢物跨膜转运. 植物生理学报, 2011, 47: 752–758 Xie X D, Cheng T C, Wang G H, Duan J, Xia Q Y. ABC and MATE transporters of plant and their roles in membrane transport of secondary metabolites. Plant Physiol Commun, 2011, 47: 752–758 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!