欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1114-1126.doi: 10.3724/SP.J.1006.2018.01114

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位

李超1,2(),李志坤1,谷淇深1,杨君1,柯会锋1,吴立强1,王国宁1,张艳1,吴金华1,张桂寅1,阎媛媛1,马峙英1,王省芬1,*()   

  1. 1 河北农业大学教育部华北作物种质资源研究与利用重点实验室, 河北保定 071001
    2 中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳455000
  • 收稿日期:2017-11-06 接受日期:2018-06-12 出版日期:2018-08-10 网络出版日期:2018-06-20
  • 通讯作者: 王省芬
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101006);河北省科技支撑计划项目(16226307D)

Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield

Chao LI1,2(),Zhi-Kun LI1,Qi-Shen GU1,Jun YANG1,Hui-Feng KE1,Li-Qiang WU1,Guo-Ning WANG1,Yan ZHANG1,Jin-Hua WU1,Gui-Yin ZHANG1,Yuan-Yuan YAN1,Zhi-Ying MA1,Xing-Fen WANG1,*()   

  1. 1 North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, Hebei, China
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2017-11-06 Accepted:2018-06-12 Published:2018-08-10 Published online:2018-06-20
  • Contact: Xing-Fen WANG
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2016YFD0101006);Hebei Science and Technology Support Program(16226307D)

摘要:

本课题组前期以陆地棉中棉所8号(CCRI8)为轮回亲本, 海岛棉Pima 90-53为供体亲本培育了一套陆地棉中棉所8号为背景的海岛棉染色体片段置换系(CSSLs), 本研究利用SSR标记对该置换系群体BC3F5进行基因型检测, 在3个不同环境下(河北保定、青县和新疆轮台)鉴定其纤维品质和产量相关性状并进行QTL定位。该置换系群体包含182个家系, 置换片段数在1~15个之间, 平均为6.6个; 导入片段长度在0.7~83.2 cM之间, 平均长度为16.8 cM; 置换片段总长度20 249.6 cM; 背景回复率在92.3%~99.6%之间, 平均为96.2%。共检测出59个相关的QTL, 其中与纤维品质性状相关的41个, 单个QTL的贡献率为1.27%~26.66%; 与产量性状相关的18个, 单个QTL的贡献率为2.03%~19.38%; 检测到14个稳定的QTL, 其中4个马克隆值和2个纤维伸长率相关的稳定QTL增效基因均来自高值亲本海岛棉Pima 90-53, 2个铃重相关的稳定QTL增效基因来自高值亲本陆地棉中棉所8号。研究结果为深入开展纤维品质和产量性状的QTL精细定位、QTL间互作和分子育种提供了理论依据。

关键词: 陆地棉, 海岛棉, 染色体片段置换系, 纤维品质, 产量, QTL定位

Abstract:

In the previous study, we developed a set of chromosome segment substitution lines (CSSLs) using G. hirsutum CCRI8 as the recipient parent and G. barbadense Pima 90-53 as the donor parent. In this study, we genotyped the BC3F5 generation of CSSLs with SSR markers, conducted QTL mapping for the fiber quality and yield traits and identified the stable QTLs in three different environments (Baoding, Qingxian, Luntai). The substituted segment number of the 182 CSSLs varied from one to fifteen, averaged 6.6. The length of introgressed segments ranged from 0.7 cM to 83.2 cM, and averaged 16.8 cM. The total length of the substituted fragment was 20 249.6 cM, background recoverage rate varied from 92.3% to 99.6%, and the average background recoverage rate was 96.2%. Fifty-nine QTLs related to fiber quality and yield traits were detected. Among them, 41 QTLs were related to fiber quality traits and each QTL explained 1.27% to 26.66% of the phenotypic variation. Eighteen QTLs for fiber yield-traits including boll weight and lint percentage were detected and each QTL explained 2.03% to 19.38% of the phenotypic variation. Fourteen stable QTLs were detected in multiple environments. Among them, four QTLs related to micronaire value and two QTLs related to fiber elongation both had enhancing alleles from G. barbadense Pima 90-53. Two boll weight QTLs had enhancing alleles from G. hirsutum CCRI8. The results provide a theoretical basis for QTL fine mapping, QTL interaction and molecular breeding for fiber quality and yield traits.

Key words: upland cotton, sea island cotton, CSSLs, fiber quality, yield, QTL mapping

图1

SSR引物扩增型 a: CCRI8基因型; b: Pima 90-53基因型; h: 杂合带型; -: 缺失带型。"

图2

导入片段长度分析示意图"

图3

染色体片段置换系基因型 左侧数字代表染色体编号(从下至上依次为A1、A2、……、A12、A13、D1、D2、……、D12、D13), 底部数字代表置换系编号(从左至右依次为CSSL1、CSSL2、……、CSSL181、CSSL182), 灰色、红色、蓝色分别代表受体亲本基因型、纯合供体亲本基因型和杂合基因型。"

图4

染色体片段置换系置换片段分析 A、B、C分别表示置换片段数量、置换片段长度、背景回复率。"

表1

染色体片段置换系置换片段覆盖情况"

染色体
Chromosome
染色体总长度
Chromosome length (cM)
覆盖长度
Coverage length (cM)
缺失长度
Deletion length (cM)
覆盖率
Coverage rate (%)
A1 82.7 82.7 0 100.0
A2 29.7 29.7 0 100.0
A3 167.7 167.7 0 100.0
A4 90.2 72.4 17.8 80.3
A5 255.8 255.8 0 100.0
A6 68.0 68.0 0 100.0
A7 111.1 105.7 5.4 95.1
A8 86.9 86.9 0 100.0
A9 151.8 151.8 0 100.0
A10 69.3 69.3 0 100.0
A11 113.4 113.4 0 100.0
A12 171.8 152.7 19.1 88.9
A13 56.8 56.8 0 100.0
D1 126.3 126.3 0 100.0
D2 155.8 142.3 13.5 91.3
D3 17.0 17.0 0 100.0
D4 51.2 51.2 0 100.0
D5 216.4 216.4 0 100.0
D6 83.9 83.9 0 100.0
D7 158.5 144.7 13.8 91.3
D8 94.2 94.2 0 100.0
D9 122.1 122.1 0 100.0
D10 95.7 95.7 0 100.0
D11 120.8 120.8 0 100.0
D12 149.1 131.4 17.7 88.1
D13 83.2 83.2 0 100.0

表2

亲本纤维品质和产量性状表现"

表3

染色体片段置换系纤维品质和产量性状统计分析"

性状
Trait
地点
Location
均值
Mean
最小值
Min.
最大值
Max.
极差
Range
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
FL 保定Baoding 29.85 26.13 34.02 7.89 1.46 4.89 0.11 -0.01
轮台Luntai 29.89 26.18 34.14 7.96 1.29 4.32 0.35 0.60
青县Qingxian 28.84 25.13 32.00 6.87 1.24 4.30 -0.01 -0.02
FS 保定Baoding 33.47 23.70 40.10 16.40 2.50 7.47 -0.46 1.81
轮台Luntai 31.23 26.88 37.09 10.21 1.83 5.86 0.32 0.04
青县Qingxian 31.83 25.23 38.61 13.38 2.37 7.45 0.10 0.04
MIC 保定Baoding 4.92 3.30 5.97 2.67 0.48 9.76 -0.70 1.12
轮台Luntai 4.68 2.99 5.68 2.69 0.44 9.40 -0.85 1.63
青县Qingxian 5.15 3.78 6.23 2.45 0.44 8.54 -0.30 -0.01
FE 保定Baoding 6.07 4.32 8.16 3.84 0.72 11.86 0.23 -0.01
轮台Luntai 7.66 5.51 10.78 5.27 0.84 10.97 0.31 1.03
青县Qingxian 5.68 3.85 8.79 4.94 0.74 13.03 0.58 1.48
FU 保定Baoding 86.48 81.50 89.10 7.60 1.16 1.34 -0.50 1.20
轮台Luntai 85.91 83.57 88.40 4.83 0.93 1.08 -0.04 -0.14
青县Qingxian 84.90 81.30 87.40 6.10 1.13 1.33 -0.10 -0.42
LP 保定Baoding 37.54 27.85 44.75 16.90 0.03 0.08 -0.28 0.85
轮台Luntai 38.82 31.00 44.00 13.00 0.02 0.05 -0.49 0.45
青县Qingxian 38.68 30.07 47.32 17.25 0.03 0.08 -0.12 0.84
BW 保定Baoding 5.08 2.37 7.72 5.35 0.87 17.13 -0.31 0.82
轮台Luntai 5.69 3.45 7.42 3.97 0.74 13.01 -0.40 0.13
青县Qingxian 5.05 2.86 7.58 4.72 0.80 15.84 -0.26 0.85

表4

染色体片段置换系纤维品质、产量性状间的相关系数"

性状
Trait
地点
Location
FL FS MIC FE FU LP
FS 保定Baoding 0.279**
轮台Luntai 0.341**
青县Qingxian 0.486**
MIC 保定Baoding -0.095 0.213**
轮台Luntai -0.250** 0.038
青县Qingxian -0.011 0.151*
FE 保定Baoding -0.198** -0.128 -0.138
轮台Luntai -0.296** -0.198** -0.039
青县Qingxian -0.173* -0.104 -0.114
FU 保定Baoding 0.416** 0.565** 0.160* 0.565**
轮台Luntai 0.418** 0.476** 0.025 0.076
青县Qingxian 0.655** 0.577** 0.119 0.115
LP 保定Baoding -0.067 -0.027 0.083 -0.046 -0.055
轮台Luntai -0.051 -0.092 0.182* 0.051 0.056
青县Qingxian -0.016 -0.051 0.017 0.031 -0.020
BW 保定Baoding 0.064 0.013 0.148* 0.191** -0.034 0.046
轮台Luntai -0.106 -0.070 -0.074 -0.078 -0.057 0.214**
青县Qingxian -0.029 -0.106 -0.042 -0.091 -0.093 0.292**

图5

纤维品质和产量性状QTL定位在分子遗传图谱的位置"

表5

染色体片段置换系纤维品质和产量性状相关QTL"

性状
Trait
QTL 染色体
Chr.
标记区间
Interval
位置
Position
LOD 加性效应
Add
贡献率
PVE (%)
方向
Direction
FL qFL15-1-1 15 NAU5107b-NAU2094 1 3.44 1.04 8.56 Pima 90-53
qFL11-1-3 11 NAU4962-DPL0338 15 3.15 -1.14 8.73 CCRI8
FS qFS1-1-1 1 BNL3090-NAU5107c 60 4.67 0.75 3.56 Pima 90-53
qFS2-1-1 2 CER0061-NAU1053 18 3.26 -1.65 2.81 CCRI8
qFS5-1-1 5 NAU3450-NAU7067 30 3.53 0.07 2.03 Pima 90-53
qFS9-1-1 9 NAU2215-NAU2211 4 3.51 -1.03 4.57 CCRI8
qFS9-2-1 9 NAU2395-NAU1079 77 3.39 -0.09 4.09 CCRI8
qFS9-3-1 9 DPL0541-NAU6101 151 3.84 0.03 3.62 Pima 90-53
qFS10-1-1 10 NAU1236-NAU2082a 0 5.05 -4.71 2.42 CCRI8
qFS15-1-1 15 NAU5107b-NAU2094 1 5.07 1.18 4.02 Pima 90-53
qFS21-1-1 21 NAU3008-NAU7140b 55 5.13 -3.15 4.65 CCRI8
qFS14-1-2 14 NAU3820-NAU3474b 129 4.39 -0.69 7.09 CCRI8
qFS24-1-2 24 CER0091-NAU1133 91 4.13 -1.25 10.20 CCRI8
qFS5-1-3 5 NAU2140a-NAU2140b 150 3.47 3.16 7.66 Pima 90-53
MIC qMIC11-1-1 11 DPL0338-DPL0528a 18 4.36 0.44 7.72 Pima 90-53
qMIC15-1-1 15 NAU5107b-NAU2094 0 5.63 0.43 6.61 Pima 90-53
qMIC15-2-1 15 NAU7049-CIR009 106 5.00 0.30 5.74 Pima 90-53
qMIC22-1-1 22 STV191-NAU2302 38 3.46 0.79 4.68 Pima 90-53
qMIC23-1-1 23 NAU858a-BNL1317 44 5.98 -0.21 9.37 CCRI8
qMIC3-1-2 3 CER0028-DOW035 53 4.97 0.48 8.14 Pima 90-53
qMIC11-1-2 11 DPL0338-DPL0528a 26 3.05 0.42 8.50 Pima 90-53
qMIC23-1-2 23 NAU858a-BNL1317 45 6.07 -0.10 11.11 CCRI8
qMIC26-1-2 26 NAU1231-NAU2170 36 3.56 -0.06 7.12 CCRI8
qMIC3-1-3 3 CER0028-DOW035 48 3.35 0.33 6.66 Pima 90-53
qMIC11-1-3 11 NAU4962-DPL0338 8 5.93 0.57 12.45 Pima 90-53
qMIC13-1-3 13 NAU7130-NAU3468 17 3.37 -0.52 5.63 CCRI8
qMIC23-1-3 23 NAU858a-BNL1317 44 3.08 -0.12 8.95 CCRI8
FE qFE5-1-1 5 NAU7067-NAU3828 39 4.01 0.35 8.01 Pima 90-53
qFE14-1-1 14 NAU998a-NAU998b 29 3.23 0.62 7.55 Pima 90-53
qFE16-1-1 16 NAU3486b-NAU3486a 158 5.77 -0.79 9.28 CCRI8
qFE14-1-2 14 NAU998b-NAU7206 43 3.66 -0.73 7.86 CCRI8
qFE16-1-2 16 NAU3486b-NAU3486a 153 9.37 -1.33 26.66 CCRI8
qFE23-1-2 23 NAU6986a-NAU858a 24 4.65 0.63 10.19 Pima 90-53
qFE1-1-3 1 BNL3090-NAU5107c 50 5.00 0.64 10.86 Pima 90-53
qFE5-1-3 5 NAU7067-NAU3828 31 5.34 0.47 8.05 Pima 90-53
qFE16-1-3 16 NAU3486b-NAU3486a 129 8.03 -1.33 15.54 CCRI8
FU qFU24-1-1 24 NAU4099-NAU1369b 16 3.10 2.49 1.27 Pima 90-53
qFU23-1-1 23 BNL1317-NAU6764 52 3.32 -0.50 1.40 CCRI8
qFU3-1-2 3 CER0028-DOW035 54 3.31 0.90 5.60 Pima 90-53
qFU4-1-2 4 DOW046-DOW027 80 3.23 -0.36 7.35 CCRI8
qFU19-1-2 19 NAU3372-NAU1364 78 4.62 -0.94 7.80 CCRI8
LP qLP9-1-1 9 NAU2215-NAU2211 19 3.23 0.04 3.35 Pima 90-53
qLP1-1-2 1 TMF18-NAU2113 9 3.94 0.02 7.30 Pima 90-53
qLP11-1-2 11 DPL0338-DPL0528a 17 7.00 0.03 13.80 Pima 90-53
性状
Trait
QTL 染色体
Chr.
标记区间
Interval
位置
Position
LOD 加性效应
Add
贡献率
PVE (%)
方向
Direction
qLP17-1-2 17 DOW091-CER0076 17 4.00 0.02 5.86 Pima 90-53
qLP21-1-2 21 NAU3265-STV069 87 3.03 0.01 4.43 Pima 90-53
qLP11-1-3 11 NAU4962-DPL0338 15 6.74 0.04 10.07 Pima 90-53
qLP15-1-3 15 NAU7049-CIR009 111 3.22 0.02 9.72 Pima 90-53
BW qBW3-1-1 3 NAU972-NAU5035 16 3.10 -0.90 6.56 CCRI8
qBW3-2-1 3 NAU972-NAU5035 36 3.37 0.07 2.77 Pima 90-53
qBW3-3-1 3 NAU5035-CER0028 69 4.02 -1.08 8.80 CCRI8
qBW4-1-1 4 NAU1214-NAU7182 0 3.06 1.26 2.03 Pima 90-53
qBW6-1-1 6 NAU1385-NAU1110 183 4.30 0.46 5.37 Pima 90-53
qBW11-1-1 11 NAU4962-DPL0338 15 5.31 -0.95 3.91 CCRI8
qBW12-1-1 12 DOW045-NAU1368 48 5.53 -0.82 4.21 CCRI8
qBW15-1-1 15 NAU5107b-NAU2094 0 7.20 -0.82 5.41 CCRI8
qBW5-1-2 5 NAU786-DPL0241 220 5.43 -1.01 19.38 CCRI8
qBW11-1-3 11 NAU4962-DPL0338 15 7.55 -0.94 9.27 CCRI8
qBW12-1-3 12 NAU1368-NAU2251 49 5.65 -0.82 7.03 CCRI8

图6

遗传图谱与物理图谱共线性比较 A3 (C3)、A5 (C5)、A11 (C11)、D7 (C7)、D9 (C9)为遗传图谱, V3、V5、V11、V7、V9为物理图谱。"

[1] Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z . Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica, 2007,155:371-380
doi: 10.1007/s10681-006-9338-6
[2] 林忠旭, 冯常辉, 郭小平, 张献龙 . 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析. 中国农业科学, 2009,42:3036-3047
Lin Z X, Feng C H, Guo X P, Zhang X L . Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton. Sci Agric Sin, 2009,42:3036-3047 (in Chinese with English abstract)
[3] Tan Z Y, Fang X M, Tang S Y, Zhang J, Liu D J, Teng Z H, Li L, Ni H J, Zheng F M, Liu D X, Zhang T F, Paterson A H, Zhang Z S . Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2015,203:615-628
doi: 10.1007/s10681-014-1288-9
[4] Zhi Y N, Chen H, Mei H X, Zhang T Z . Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014,195:143-156
doi: 10.1007/s10681-013-0990-3
[5] 李朋波, 曹美莲, 刘惠民, 杨六六, 陈耕 . 陆地棉遗传图谱构建与纤维品质性状QTL定位. 西北植物学报, 2006,26:1098-1104
Li P B, Cao M L, Liu H M, Yang L L, Chen G . Genetic map construction and QTL mapping of fibre quality in upland cotton (Gossypium hirsutum L.). Acta Bot Boreali-Occident Sin, 2006,26:1098-1104
[6] 吴茂清, 张献龙, 聂以春, 贺道华 . 四倍体栽培棉种产量和纤维品质性状的QTL定位. 遗传学报, 2003,30:443-452
doi: 10.1016/S0891-0618(02)00103-5
Wu M Q, Zhang X L, Nie Y C, He D H . Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genet Sin, 2003,30:443-452 (in Chinese with English abstract)
doi: 10.1016/S0891-0618(02)00103-5
[7] Li C, Dong Y T, Zhao T L, Li L, Li C, Yu E, Mei L, Daud M K, He Q L, Chen J H, Zhu S J . Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci, 2016,7:1356
[8] Wang H T, Huang C, Zhao W X, Dai B S, Shen C, Zhang B B, Li D G, Lin Z X . Identification of QTL for fiber quality and yield traits using two immortalized backcross populations in upland cotton. PLoS One, 2016,11:e0166970
[9] 朱亚娟, 王鹏, 郭旺珍, 张天真 . 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010,36:1318-1323
doi: 10.3724/SP.J.1006.2010.01318
Zhu Y J, Wang P, Guo W Z, Zhang T Z . Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin, 2010,36:1318-1323 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01318
[10] Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z . Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012,124:1415-1428
[11] 付央, 苑冬冬, 胡文静, 蔡彩平, 郭旺珍 . 陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位. 作物学报, 2013,39:21-28
doi: 10.3724/SP.J.1006.2013.00021
Fu Y, Yuan D D, Hu W J, Cai C P, Guo W Z . Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin, 2013,39:21-28 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00021
[12] 沈超, 李定国, 聂以春, 林忠旭 . 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL. 作物学报, 2017,43:1733-1745
Shen C, Li D G, Nie Y C, Lin Z X , QTL mapping for yield and fiber quality traits using Gossypium mustelinum chromosome segment introgression lines. Acta Agron Sin, 2017,43:1733-1745 (in Chinese with English abstract)
[13] 解信美 . 陆地棉遗传标准系TM-1背景的阔叶棉TX-48染色体片段渐渗系的培育. 南京农业大学硕士学位论文, 江苏南京, 2013
doi: 10.7666/d.Y2527436
Xie X M . Development of Chromosome Segment Introgression Lines from Gossypium hirsutumrace latifolium acc. TX-48 in Genetic Standard Line, G hirsutum cv. TM-l. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 ( in Chinese with English abstract)
doi: 10.7666/d.Y2527436
[14] Guo Y P, Guo X, Wang F, Wei Z, Zhang S Q, Wang L Y, Yuan Y C, Zeng W G, Zhang G H, Zhang T Z, Song X L, Sun X Z . Molecular tagging andmarker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton. Euphytica, 2014,200:239-250
doi: 10.1007/s10681-014-1150-0
[15] 何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 巩万奎, 白志川, 袁有禄 . 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014,40:457-465
doi: 10.3724/SP.J.1006.2014.00457
He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T, Gong J W, Liu A Y, Shang H H, Gong W K, Bai Z C, Yuan Y L . QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin, 2014,40:457-465 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00457
[16] 王云鹏, 王省芬, 李志坤, 杨鑫雷, 张艳, 吴立强, 吴金华, 张桂寅, 马峙英 . 陆地棉背景的Pima棉染色体片段置换系创制. 植物遗传资源学报, 2016,17:114-119
doi: 10.13430/j.cnki.jpgr.2016.01.017
Wang Y P, Wang X F, Li Z K, Yang X L, Zhang Y, Wu L Q, Wu J H, Zhang G Y, Ma Z Y . Development of Pima cotton chromosome segment substitution lines with Gossypium hirsutum background. J Plant Genet Resour, 2016,17:114-119 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.01.017
[17] Paterson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127
[18] Young N D, Tanksley S D . Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989,77:95-101
doi: 10.1007/BF00292322 pmid: 24232480
[19] Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z . QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006,152:367-378
doi: 10.1007/s10681-006-9224-2
[20] Zhang Z S, Hu M C, Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q . Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed, 2009,24:49-61
[21] 王琳, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红, 华金平, 王坤波 . 鲁棉研15号纤维品质性状QTL定位研究. 棉花学报, 2012,24:97-105
doi: 10.3969/j.issn.1002-7807.2012.02.001
Wang L, Liu F, Li S H, Wang C Y, Zhang X D, Wang Y H, Hua J P, Wang K B . QTL mapping for fiber quality properties in lumianyan 15. Cotton Sci, 2012, 24:97-105 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2012.02.001
[22] 杨晓军, 谢传晓, 李新海, 张世煌 . 低氮逆境下玉米产量及相关性状 QTL整合与一致性分析. 玉米科学, 2010,18(4):32-39
Yang X J, Xie C X, Li X H, Zhang S H . Analysis of consensus QTL for grain yield and other traits under low nitrogen conditions on maize. J Maize Sci, 2010, 18(4):32-39 (in Chinese with English abstract)
[23] Causse M, Salibacolombani V, Lecomte L, Duffé P, Rousselle P, Buret M . QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot, 2002,53:2089-2098
doi: 10.1093/jxb/erf058
[24] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch S R . Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001,102:41-52
[25] 胡文静, 张晓阳, 张天真, 郭旺珍 . 陆地棉优质纤维QTL的分子标记筛选及优质来源分析. 作物学报, 2008,34:578-586
Hu W J, Zhang X Y, Zhang T Z, Guo W Z . Molecular tagging and source analysis of QTL for elite fiber quality in upland cotton. Acta Agron Sin, 2008,34:578-586 (in Chinese with English abstract)
[26] Gore M A, Fang D D, Poland J A . Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome, 2014,7:1-10
[27] Zhang K, Zhang J, Ma J, Tang S Y, Liu D J, Teng Z H, Liu D X, Zhang Z S . Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed, 2012,29:335-348
[28] Akash M W. Quantitative trait loci mapping for agronomic and fiber quality traits in upland cotton (Gossypium hirsutum L.)using molecular markers. PhD Dissertation of Louisiana State University, Louisiana, USA, 2003.
[29] Zhang T Z, Qian N, Zhu X F, Chen H, Wang S, Mei H X, Zhang Y M . Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in china. PLoS One, 2013,8:e57220
doi: 10.1371/journal.pone.0057220
[30] 杨鑫雷, 王志伟, 张桂寅, 潘玉欣, 吴立强, 李志坤, 王省芬, 马峙英 . 棉花分子遗传图谱构建和纤维品质性状QTL分析. 作物学报, 2009,35:2159-2166
Yang X L, Wang Z W, Zhang G Y, Pan Y X, Wu L Q, Li Z K, Wang X F, Ma Z Y . Construction of molecular genetic map and QTL analysis of fiber quality in cotton. Acta Agron Sin, 2009,35:2159-2166 (in Chinese with English abstract)
[31] Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M . Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009,118:581-590
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!