欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 153-159.doi: 10.3724/SP.J.1006.2019.84059

• 研究简报 • 上一篇    

不同马铃薯品种的氮利用效率及其分类研究

何丹丹,贾立国,秦永林,樊明寿()   

  1. 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2018-04-16 接受日期:2018-10-08 出版日期:2018-11-01 网络出版日期:2018-11-01
  • 通讯作者: 樊明寿
  • 基金资助:
    本研究由内蒙古重大专项“马铃薯种薯繁育与商品薯生产中资源高效利用技术的创新”、“马铃薯轮作体系优化及水肥资源高效利用技术的研究与应用”(KCBJ2018010);内蒙古高校创新团队马铃薯高产高效团队项目资助(NMGIRT-A1602)

Classification of potato cultivars by their nitrogen use efficiency

Dan-Dan HE,Li-Guo JIA,Yong-Lin QIN,Ming-Shou FAN()   

  1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2018-04-16 Accepted:2018-10-08 Published:2018-11-01 Published online:2018-11-01
  • Contact: Ming-Shou FAN
  • Supported by:
    This study was supported by the Inner Mongolia Major Special Project “Innovation of Resource Use Efficiency Improvement Technology during Seed Potato Propagation and Commercial Potato Production”, “Optimization of potato rotation system and its improvement and application in water and fertilizer management technology(KCBJ2018010);Innovative Research Team Project of Inner Mongolia “Innovative Team of Potato High Yield and High Efficiency“(NMGIRT-A1602)

摘要:

以7个马铃薯品种为供试材料, 设置大田条件下施氮和不施氮2种处理, 在对块茎产量和植株氮素吸收、利用评价的基础上, 将不同氮效率品种马铃薯分类并解析了其差异机制。基于2016年施氮和不施氮条件下各品种马铃薯的平均产量, 把不同氮效率品种马铃薯分为双高效型、低氮高效型、高氮高效型和双低效型。2017年选择双高效型、低氮高效型、双低效型的代表性品种, 对各类型氮效率差异进一步解析表明, 双高效型氮素利用效率显著高于另两个类型, 氮素吸收效率则是双高效型、低氮高效型显著高于双低效型。不施氮条件下, 双高效型马铃薯的干物质累积量在整个生育时期均显著高于另2个品种; 双高效型、低氮高效型氮素累积速率在出苗后0~50 d显著高于双低效型马铃薯。施氮条件下, 双高效型马铃薯的干物质累积量显著高于另2个品种, 与双低效型马铃薯相比, 双高效型和低氮高效型产量的提高主要归因于它们前期较高的干物质累积; 双高效型氮素累积速率显著高于双低效型、低氮高效型。双高效型马铃薯在各生育期的物质生产和氮素吸收能力强, 从而有利于氮效率提升和产量的形成。该研究结果可为马铃薯氮高效品种筛选和利用提供理论支撑。

关键词: 马铃薯, 氮素吸收效率, 氮素利用效率

Abstract:

Nitrogen efficiency of seven potato varieties was evaluated under field conditions with or without nitrogen application. Basing on tuber yield, plant nitrogen absorption and utilization of different potato cultivars, we classified nitrogen use efficiencies of seven potato varieties into four types: double high efficiency (DH), low nitrogen and high efficiency (LNH), high nitrogen and high efficiency (HNH), and double low efficiency (DL). Furthermore, one representative variety from DH, LNH and DL types respectively was selected to analyze the mechanism on the difference in nitrogen use efficiency, showing that nitrogen use efficiency of DH type was significantly higher than that of the other two types; the nitrogen absorption efficiency of DH and LNH was higher than that of DL type. Under no nitrogen application condition, the dry matter accumulation of DH type was significantly higher than that of the other two types at whole growth stage, and the cumulative rate of nitrogen in DH and LNH was significantly higher than that in DL type at 0-50 days after emergence. The dry matter accumulation of DH potato was significantly higher than that of the other two cultivars when nitrogen applied. Compared with DL type, the yield increase of DH and LNH was mainly attributed to the higher accumulation of dry matter at the early stage of potato. The nitrogen accumulation rate of DH was significantly higher than that of DL and LNH types under nitrogen fertilizer application. The greater nitrogen and dry matter accumulation in DH cultivars benefit yield formation and increase of nitrogen use efficiency. The results could provide theoretical support for high nitrogen use efficiency variety screening and its utilization.

Key words: potato, nitrogen uptake efficiency, N nitrogen use efficiency

表1

7个马铃薯品种产量、干重和氮素利用效率的差异"

参数
Parameter
范围 Range 均值 Mean 方差分析 ANOVA
N- N+ N- N+ 品种Cultivar 氮水平
N level
交互
G*N
地上部干物质量Shoot dry mass (g plant-1) 39.60-64.21 52.29-105.13 51.77 77.53 ** ** **
块茎干物质量Tuber dry mass (g plant-1) 80.69-216.21 132.18-258.02 157.56 207.88 ** ** **
地上部氮累积量Shoot N accumulation (g plant-1) 0.74-1.39 1.58-2.61 1.01 2.10 ** ** **
块茎氮累积量Tuber N accumulation (g plant-1) 0.55-2.16 1.31-3.66 1.41 3.06 ** ** **
产量Yield (t hm-2) 12.28-35.96 27.56-46.46 24.34 40.64 ** ** **
氮素吸收效率N uptake efficiency (%) 48.28-96.10 85.10 **
氮素利用效率N utilization efficiency (g g-1) 167.35-442.12 147.32-214.03 236.12 179.18 ** ** **
氮收获指数N harvest index (%) 39.07-68.59 44.19-68.19 56.97 58.54 ** ** **

图1

不同氮效率的马铃薯品种产量的分布 I: 双高效型; II: 低氮高效型; III: 双低效型; IV: 高氮高效型。"

表2

不同马铃薯品种氮素吸收和利用效率"

处理
Treatment
类型
Type
品种
Cultivar
产量
Yield
(t hm-2)
氮素利用效率
N utilization
efficiency (g g-1)
氮素吸收效率
N uptake
efficiency (%)
N- 双低效型Double low efficiency 麦肯1号 McCain 1 23.78 b 203.42 a
低氮高效型Low nitrogen and high efficiency 夏波蒂 Sheopdy 37.68 a 224.32 a
双高效型Double high efficiency 克新1号 Kexin 1 33.49 a 270.78 a
N+ 双低效型Double low efficiency 麦肯1号 McCain 1 28.11 c 151.58 b 69.15 b
低氮高效型Low nitrogen and high efficiency 夏波蒂 Sheopdy 42.18 b 159.70 b 97.98 a
双高效型Double high efficiency 克新1号 Kexin 1 50.25 a 187.51 a 99.66 a

表3

不同氮效率类型马铃薯干物质量的差异"

处理
Treatment
品种
Cultivar
出苗天数 Days after emergence
20 d 35 d 50 d 65 d 80 d
N- 麦肯1号 McCain 1 17.35 a 34.03 c 85.68 c 212.30 c 203.38 c
夏波蒂 Sheopdy 14.91 b 55.55 b 197.31 b 343.82 a 327.09 b
克新1号 Kexin 1 16.40 a 61.16 a 223.23 a 308.69 b 347.34 a
N+ 麦肯1号 McCain 1 18.97 b 41.73 c 132.80 c 307.40 b 266.82 c
夏波蒂 Sheopdy 19.04 b 76.14 b 242.52 b 404.59 a 446.82 b
克新1号 Kexin 1 22.89 a 89.13 a 259.86 a 405.42 a 507.06 a

表4

不同氮效率品种马铃薯干物质累积速率的差异"

处理
Treatment
品种
Cultivar
出苗天数 Days after emergence
0-20 d 20-35 d 35-50 d 50-65 d 65-80 d
N- 麦肯1号 McCain 1 0.87 a 1.11 c 3.44 c 8.43 b -0.59 b
夏波蒂 Sheopdy 0.74 b 2.70 b 9.45 b 9.76 a -1.11 c
克新1号 Kexin 1 0.82 a 2.97 a 10.80 a 5.69 c 2.57 a
N+ 麦肯1号 McCain 1 0.95 b 1.51 c 6.07 c 11.64 a -2.70 c
夏波蒂 Sheopdy 0.95 b 3.80 b 11.09 b 10.80 b 2.81 b
克新1号 Kexin 1 1.14 a 4.40 a 11.38 a 9.70 c 6.77 a

表5

不同氮效率品种马铃薯氮素累积量的差异"

处理
Treatment
品种
Cultivar
出苗天数 Days after emergence
20 d 35 d 50 d 65 d 80 d
N- 麦肯1号 McCain 1 0.65 a 0.91 b 1.90 b 3.42 c 2.36 c
夏波蒂 Sheopdy 0.65 a 1.51 a 3.45 a 5.08 a 4.30 a
克新1号 Kexin 1 0.67 a 1.52 a 3.31 a 3.80 b 3.56 b
N+ 麦肯1号 McCain 1 0.83 c 1.37 c 3.03 c 5.54 b 3.79 c
夏波蒂 Sheopdy 0.93 b 2.40 b 4.87 b 7.85 a 6.61 b
克新1号 Kexin 1 1.12 a 2.68 a 5.83 a 7.99 a 7.22 a

表6

不同氮效率品种马铃薯氮素吸收速率的差异"

处理
Treatment
品种
Cultivar
出苗天数 Days after emergence
0-20 d 20-35 d 35-50 d 50-65 d 65-80 d
N- 麦肯1号 McCain 1 32.81 a 17.21 b 66.03 b 101.23 a -70.73 c
夏波蒂 Sheopdy 32.92 a 56.78 a 129.60 a 109.03 a -52.48 b
克新1号 Kexin 1 33.53 a 56.60 a 119.58 a 32.45 b -15.83 a
N+ 麦肯1号 McCain 1 41.75 c 35.97 b 110.82 c 167.15 b -116.34 c
夏波蒂 Sheopdy 46.50 b 98.12 a 165.07 b 198.50 a -82.80 b
克新1号 Kexin 1 56.05 a 104.12 a 210.42 a 143.45 c -51.25 a
[1] 曾凡逵, 许丹, 刘刚 . 马铃薯营养综述. 中国马铃薯, 2015, ( 4):233-243.
Zeng F K, Xu D, Liu G . Potato nutrition: a critical review. Chin Potato J, 2015, ( 4):233-243 (in Chinese with English abstract).
[2] Zheng H L, Liu Y C, Qin Y L, Chen Y, Fan M S . Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter. J Integr Agric, 2015,14:190-195.
doi: 10.1016/S2095-3119(14)60925-4
[3] Hawkesford M J, Kopriva S, Kok L J D . Nutrient use efficiency in plants. Commun Soil Sci Plant Anal, 2001,32:921-950.
doi: 10.1081/CSS-100104098
[4] 刘敏娜, 刘晓霞, 丁文雅, 陈秋会, 林咸永 . 不同菠菜基因型氮素吸收与利用效率的差异及其评价. 浙江大学学报(农业与生命科学版), 2012,38:599-607.
doi: 10.3785/j.issn.1008-9209.2011.12.292
Liu M N, Liu X X, Ding W Y, Chen Q H, Lin X Y . Variation in nitrogen uptake and utilization efficiency in spinach genotypes and its evaluation. J Zhejiang Univ (Agric Life Sci), 2012,38:599-607 (in Chinese with English abstract).
doi: 10.3785/j.issn.1008-9209.2011.12.292
[5] 杨睿, 伍晓明, 安蓉, 李亚军, 张玉莹, 陈碧云, 高亚军 . 不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系. 植物营养与肥料学报, 2013,19:586-596.
doi: 10.11674/zwyf.2013.0308
Yang R, Wu X M, An R, Li Y J, Zhang Y Y, Chen B Y, Gao Y J . Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. J Plant Nutr Fert, 2013,19:586-596 (in Chinese with English abstract).
doi: 10.11674/zwyf.2013.0308
[6] 程建峰, 戴廷波, 荆奇, 姜东, 潘晓云, 曹卫星 . 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007,44:266-272.
doi: 10.3321/j.issn:0564-3929.2007.02.011
Cheng J F, Dai T B, Jing Q, Jiang D, Pan X Y, Cao W X . Root morphological and physiological characteristics in relation to nitrogen absorption efficiency in different rice genotypes. Acta Pedol Sin, 2007,44:266-272 (in Chinese with English abstract).
doi: 10.3321/j.issn:0564-3929.2007.02.011
[7] 黄高宝, 张恩和, 胡恒觉 . 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001,7:293-297.
doi: 10.11674/zwyf.2001.0308
Huang G B, Zhang E H, Hu H J . Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Plant Nutr Fert Sci, 2001,7:293-297 (in Chinese with English abstract).
doi: 10.11674/zwyf.2001.0308
[8] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明 . 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49:2267-2279.
Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M . Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Sci Agric Sin, 2016,49:2267-2279 (in Chinese with English abstract).
[9] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军 . 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008,34:119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J . Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agrona Sin, 2008,34:119-125 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00119
[10] Ankumah R O, Khan V, Mwamba K, Kpomblekou A K . The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars. Agric Ecosyst Environ, 2003,100:201-207.
doi: 10.1016/S0167-8809(03)00196-8
[11] Errebhi M, Rosen C J, Gupta S C, Birong D E . Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J, 1998,90:10-15.
doi: 10.2134/agronj1998.00021962009000010003x
[12] Zvomuya F, Rosen C J, Jcjr M . Response of Russet Norkotah clonal selections to nitrogen fertilization. Am J Potato Res, 2002,79:231-239.
doi: 10.1007/BF02986355
[13] Trehan S P . Nutrient management by exploiting genetic diversity of potato: a review. Potato J, 2005,32:1-15.
[14] 姜丽霞 . 施肥对旱作马铃薯不同品种质氮磷钾吸收分配及产质量的影响. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特 2010.
doi: 10.7666/d.d198021
Jiang L X . Effect of Fertilization on Absorption and Distribution of N, P, K and Yield and Quality of Potato under Drought Conditions. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2010. (in Chinese with English abstract)
doi: 10.7666/d.d198021
[15] Sulaya Q, Jia L G, Qin Y L, Chen Y, Fan M S . Effects of different nitrogen forms on potato growth and development. J Plant Nutr, 2017,40:1151-1159.
doi: 10.1080/01904167.2016.1269345
[16] Gao Y, Jia L G, Bo H, Alva A, Fan M S . Potato stolon and tuber growth influenced by nitrogen form. Plant Product Sci, 2014,17:138-143.
doi: 10.1626/pps.17.138
[17] Beatty P H, Anbessa Y, Juskiw P, Carroll1 R T, Wang J, Good A G . Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Ann Bot, 2010,105:1171-1782.
doi: 10.1093/aob/mcq025 pmid: 20308048
[18] Moll R H, Kamprath E J, Jackson W A . Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1962,74:562-564.
[19] Hirose T . Nitrogen use efficiency revisited. Oecologia, 2011,166:863-867.
[20] Matson P, Lohse K A, Hall S J . The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO, 2002,31:113-119.
doi: 10.1639/0044-7447(2002)031[0113:TGONDC]2.0.CO;2 pmid: 12077999
[21] Cormier F, Foulkes J, Hirel B, Gouache D, Moenne-Loccoz Y, Gouis J L . Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.). Plant Breed, 2016,135:255-278.
doi: 10.1111/pbr.12371
[22] Bueren E T L V, Thorup-Kristensen K, Leifert C, Cooper J M, Becker H C . Breeding for nitrogen efficiency: concepts, methods, and case studies. Euphytica, 2014,199:1-2.
doi: 10.1007/s10681-014-1206-1
[23] Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J . Genetic variability in nitrogen use efficiency of spring barley. Crop Sci, 2009,49:1259-1269.
doi: 10.2135/cropsci2008.09.0566
[24] Ior J, Sayre K D, Rajaram S, Mcmahon M . Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci, 1997,37:898-904
doi: 10.2135/cropsci1997.0011183X003700030033x
[25] Saluzzo J A, Echeverria H E, Andrade F H, Huartc M . Nitrogen nutrition of potato cultivars differing in maturity. J Agron Crop Sci, 1999,183:157-165.
doi: 10.1046/j.1439-037x.1999.00323.x
[26] Kleinkopf G E, Westermann D T, Dwelle R B . Dry matter production and nitrogen utilization by six potato cultivars. Agron J, 1981,73:799-802.
doi: 10.2134/agronj1981.00021962007300050013x
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[10] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[11] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[14] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[15] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!