欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 196-203.doi: 10.3724/SP.J.1006.2019.84100

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于重测序的陆地棉InDel标记开发与评价

吴迷,汪念,沈超,黄聪,温天旺,林忠旭()   

  1. 华中农业大学植物科学技术学院 / 作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2018-07-19 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-16
  • 通讯作者: 林忠旭
  • 基金资助:
    本研究由湖北省技术创新专项资助(2018ABA082)

Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data

Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN()   

  1. National Key Laboratory of Crop Genetic Improvement / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2018-07-19 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-16
  • Contact: Zhong-Xu LIN
  • Supported by:
    This study was supported by the Technology Innovation Program of Hubei Province(2018ABA082)

摘要:

碱基插入/缺失(InDel)是基因组中丰富的遗传变异形式。InDel以其密度高、易于基因型分型等优点成为分子标记开发的理想来源。本研究利用262份陆地棉品系重测序数据鉴定的InDel位点, 在全基因组范围内设计了3206个InDel标记并挑选均匀分布的320个标记进行验证。320个标记筛选出87个多态性标记, 多态性率为26.88%。利用多态性标记对不同地理来源的262份陆地棉种质资源进行基因分型, 共检测到160个等位位点; 多态性信息含量(PIC)为0.0836~0.3750, 平均值为0.3073; 基因多样性指数变异范围为0.0874~0.5000, 平均值为0.3876, 表明我国陆地棉遗传基础相对狭窄。群体结构分析将262份陆地棉品系大致划分为2个亚群, 聚类分析和主成分分析的结果与之基本一致。采用混合线性模型(Mixed linear model)对6个纤维品质性状的关联分析检测到65个关联位点(P < 0.01), 各位点对表型变异贡献率为2.57%~8.12%。本研究旨在利用重测序数据开发全基因组范围的可用于凝胶检测的InDel标记, 为棉花种质资源研究和分子标记辅助选择育种提供便捷工具。

关键词: 陆地棉, InDel标记, 遗传多样性, 群体结构, 关联分析

Abstract:

Insertion and deletion (InDel) are abundant forms of genetic variation in the genome. InDel has been recognized as an ideal source for marker development due to its high-density distribution and genotyping efficiency. In this study, the whole genome re-sequencing data of 262 upland cotton accessions were applied to identify 3206 InDel markers, and 320 markers with uniform distribution across the genome were selected to be evaluated. Eighty-seven polymorphic markers were identified, accounting for 26.88% of screened markers. A total of 160 allelic loci were detected using the 87 polymorphic markers in the 262 upland cotton accessions with an average polymorphic information content (PIC) of 0.3073 (ranging from 0.0836 to 0.3750) and an average genetic diversity of 0.3876 (ranging from 0.0874 to 0.5000), indicating a relatively low genetic diversity. Population structure analysis revealed extensive admixture and identified two subgroups, clustering analysis and principal component analysis supported the subgroups identified by STRUCTURE. Association analysis were performed by MLM (Mixed linear model), and 65 marker loci were associated with fiber quality traits (P < 0.01), explaining 2.57%-8.12% of the phenotypic variation. Genome-wide and gel based InDel markers developed based on re-sequencing data in this study provide a facile tool for cotton germplasm resources research and molecular marker assisted selection breeding.

Key words: Upland cotton, InDel marker, genetic diversity, population structure, association analysis

图1

标记HAU_ID_D11-01在部分品系中扩增结果"

图2

K值与ln P(D)、ΔK值折线图 A: ln P(D)与K值变化折线图; B: ΔK值随K值变化折线图。"

图3

基于InDel标记的262份陆地棉品系群体结构图"

图4

基于InDel标记的262份陆地棉品系的PCA图 NIR: 中国西北内陆棉区; NSEMR: 中国北方特早熟棉区; SCR: 中国南方棉区; SU: 前苏联; USA: 美国; YRR: 中国黄河流域棉区; YtRR: 中国长江流域棉区。"

图5

基于遗传距离的系统发生树 红色线条: G1, 包含182份种质材料; 绿色线条: G2, 包含80份种质材料。"

表1

多效应标记位点"

标记位点
Marker locus
染色体
Chromosome
位置
Position (bp)
性状
Trait
HAU_ID_A01-15 A01 93250996 FUHML, FU, SF
HAU_ID_A03-09 A03 57007522 FE, FU, SF
HAU_ID_A08-06 A08 39475602 FE, MV
HAU_ID_A08-07 A08 47285210 FE, MV
HAU_ID_A08-14 A08 98729870 FU, SF
HAU_ID_A09-04 A09 23151235 FUHML, FS
HAU_ID_A10-01 A10 1109653 MV, SF
HAU_ID_A10-09 A10 57152725 FS, FU, MV
HAU_ID_D01-10 D01 43635771 FS, FU
HAU_ID_D02-01 D02 1069504 FUHML, FE
HAU_ID_D02-08 D02 45682280 MV, SF
HAU_ID_D04-07 D04 47451029 FE, MV
HAU_ID_D06-06 D06 35163294 FUHML, FU, SF
HAU_ID_D06-07 D06 39113925 FUHML, FU, SF
HAU_ID_D07-04 D07 23469098 FU, SF
HAU_ID_D07-09 D07 47924875 FUHML, FS, FE, FU, SF
HAU_ID_D09-10 D09 49075327 FUHML, SF
HAU_ID_D11-13 D11 65414930 FE, SF
HAU_ID_D12-10 D12 51191458 FUHML, FS, FU, SF
[1] 喻树迅 . 中国棉花产业百年发展历程. 农学学报, 2018, ( 1):85-91.
Yu S X . The development of cotton production in the recent hundred years of China. J Agric, 2018, ( 1):85-91 (in Chinese with English abstract).
[2] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 余渝, 李保成 . 基于表型性状的陆地棉种质资源遗传多样性分析. 植物遗传资源学报, 2016,17:438-446.
doi: 10.13430/j.cnki.jpgr.2016.03.006
Dong C G, Wang J, Zhou X F, Ma X M, Li S X, Yu Y, Li B C . Evaluation on genetic diversity of cotton germplasm resources (Gossypium hirsutum L.) on morphological characters. J Plant Genet Resour, 2016,17:438-446 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2016.03.006
[3] Dong C G, Wang J, Yu Y, Li B C, Chen Q J . Association mapping and favourable QTL alleles for fibre quality traits in Upland cotton (Gossypium hirsutum L.). J Genet, 2018,97:e1-e12.
doi: 10.1007/s12041-017-0878-4 pmid: 29700269
[4] Huang C, Shen C, Wen T W, Gao B, Zhu D, Li X, Ahmed M M, Li D, Lin Z X . SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genomics, 2018,293:793-805.
doi: 10.1007/s00438-018-1419-4 pmid: 29392407
[5] Sahu P K, Mondal S, Sharma D, Vishwakarma G, Kumar V, Das B K . InDel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS One, 2017,12:e0188864.
doi: 10.1371/journal.pone.0188864 pmid: 29190790
[6] Liu J, Qu J T, Yang C, Tang D G, Li J W, Lan H, Rong T Z . Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics, 2015,16:601.
doi: 10.1186/s12864-015-1797-5 pmid: 4535256
[7] Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X W, Wu J . Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet, 2013,126:231-239.
doi: 10.1007/s00122-012-1976-6 pmid: 22972202
[8] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
[9] Wang M J, Tu L L, Min L, Lin Z X, Wang P C, Yang Q Y, Ye Z X, Shen C, Li J Y, Zhang X L . Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet, 2017,49:579-587.
doi: 10.1038/ng.3807 pmid: 28263319
[10] Huang C, Nie X H, Shen C, You C Y, Li W, Zhao W X, Zhang X L, Lin Z X . Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J, 2017,15:1374-1386.
doi: 10.1111/pbi.12722 pmid: 5633765
[11] Nie X H, Huang C, You C Y, Li W, Zhao W X, Shen C, Zhang B B, Wang H T, Yan Z H, Dai B S, Wang M J, Zhang X L, Lin Z X . Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics, 2016,17:352.
doi: 10.1186/s12864-016-2662-x pmid: 4866303
[12] Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000,132:365-386.
doi: 10.1385/1-59259-192-2:365
[13] Li X M, Yuan D J, Wang H T, Chen X M, Wang B, Lin Z X, Zhang X L . Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome, 2012,55:459-470.
doi: 10.1139/g2012-032 pmid: 22670804
[14] Botstein D, White R L, Skolnick M, Davis R W . Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331.
[15] Letunic I, Bork P . Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucl Acids Res, 2016,44:W242-W245.
doi: 10.1093/nar/gkw290 pmid: 4987883
[16] Pritchard J K, Stephens M, Donnelly P . Inferences of population structure using multilocus genotype data. Genetics, 2000,155:945-959.
[17] Earl D A, Vonholdt B M . STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012,4:359-361.
doi: 10.1007/s12686-011-9548-7
[18] Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2010,14:2611-2620.
[19] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[20] Wu D H, Wu H P, Wang C S, Tseng H Y, Hwu K K . Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica, 2013,192:131-143.
doi: 10.1007/s10681-013-0925-z
[21] Wang H, Jin X, Zhang B, Shen C, Lin Z . Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing. DNA Res, 2015,22:147-160.
doi: 10.1093/dnares/dsu047 pmid: 4401325
[22] Lin Z X, Zhang Y X, Zhang X L, Guo X P . A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009,166:35-45.
[23] Liu R Z, Wang B H, Guo W Z, Qin Y S, Wang L G, Zhang Y M, Zhang T Z . Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed, 2012,29:297-311.
doi: 10.1007/s11032-011-9547-0
[24] Fang D D, Li P, Thyssen G, Hinze L L, Percy R G . A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.). Euphytica, 2013,191:391-401.
[25] Wen T W, Wu M, Shen C, Gao B, Zhu D, Zhang X L, You C Y, Lin Z X . Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J, 2018,16:1654-1666.
doi: 10.1111/pbi.12902
[26] Ai X, Liang Y, Wang J, Zheng J, Gong Z, Guo J, Li X, Qu Y . Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data. Genetica, 2017,145:409-416.
doi: 10.1007/s10709-017-9976-8 pmid: 28755130
[27] Tyagi P, Gore M A, Bowman D T, Campbell B T, Udall J A, Kuraparthy V . Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet, 2014,127:283-295.
doi: 10.1007/s00122-013-2217-3 pmid: 24170350
[28] Flint-Garcia S A, Thornsberry J M, Buckler E S . Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003,54:357-374.
doi: 10.1146/annurev.arplant.54.031902.134907
[29] Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S . Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010,4:355-360.
doi: 10.1038/ng.546 pmid: 20208535
[30] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, Du X M . Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018,50:803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016
[31] Zhang S W, Feng L C, Xing L T, Yang B, Gao X, Zhu X F, Zhang T Z, Zhou B L . New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed, 2016,135:90-101.
doi: 10.1111/pbr.12337
[32] Fang L, Wang Q, Hu Y, Jia Y H, Chen J D, Liu B L, Zhang Z Y, Guan X Y, Chen S Q, Zhou B L, Du X M . Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017,49:1089-1098.
doi: 10.1038/ng.3887 pmid: 28581501
[33] Islam M S, Thyssen G N, Jenkins J N, Zeng L, Delhom C D, McCarty J C, Deng D D, Hinchliffe D J, Jones D C, Fang D D . A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 2016,17:903.
doi: 10.1186/s12864-016-3249-2
[34] Sun Z W, Wang X F, Liu Z W, Gu Q S, Zhang Y, Li Z K, Ke H F, Yang J, Wu J H, Wu L Q, Zhang G Y, Zhang C Y, Ma Z Y . Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J, 2017,15:982-996.
doi: 10.1111/pbi.12693 pmid: 28064470
[35] Liu Z H, Zhu L, Shi H Y, Chen Y, Zhang J M, Zheng Y, Li X B . Cotton GASL genes encoding putative gibberellin- regulated proteins are involved in response to GA signaling in fiber development. Mol Biol Rep, 2013,40:4561-4570.
doi: 10.1007/s11033-013-2543-1 pmid: 23645033
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[10] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[11] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!