欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1319-1326.doi: 10.3724/SP.J.1006.2019.82062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于通路分析剖析水稻农艺性状配合力和杂种优势

向丽媛1,徐凯1,苏静1,吴超1,袁雄1,郑兴飞2,刁英2,胡中立2,李兰芝1,*()   

  1. 1 湖南农业大学/湖南省农业大数据分析与决策工程技术研究中心, 湖南长沙410128
    2 武汉大学/杂交水稻国家重点实验室, 湖北武汉430072
  • 收稿日期:2018-12-13 接受日期:2019-05-12 出版日期:2019-09-12 网络出版日期:2019-05-31
  • 通讯作者: 李兰芝
  • 作者简介:E-mail: xly941026@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100101);湖南省自然科学基金项目(2016JJ3070);湖南农大作物种质创新与资源利用国家重点实验室培育基地开放课题资助(16KFXM03)

Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis

XIANG Li-Yuan1,XU Kai1,SU Jing1,WU Chao1,YUAN Xiong1,ZHENG Xing-Fei2,DIAO Ying2,HU Zhong-Li2,LI Lan-Zhi1,*()   

  1. 1 Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making/Hunan Agricultural University, Changsha 410128, Hunan, China;
    2 State Key Laboratory of Hybrid Rice/Wuhan University, Wuhan 430072, Hubei, China
  • Received:2018-12-13 Accepted:2019-05-12 Published:2019-09-12 Published online:2019-05-31
  • Contact: Lan-Zhi LI
  • Supported by:
    The study was supported by the National Key Research and Development Program(2016YFD0100101);the Natural Science Foundation of Hunan Province(2016JJ3070);the State Key Laboratory of Crop Germplasm Innovation and Resource Utilization Breeding Base(16KFXM03)

摘要:

按照NCII遗传交配设计构建测交群体, 考察包括产量性状在内的9个农艺性状, 对水稻农艺性状表型、配合力和杂种优势进行通路分析, 以期为水稻品种的培育和改良提供理论基础。结果表明, 主穗实粒数与生物调控、千粒重与半胱氨酸和蛋氨酸代谢、主穗长与SNARE相关囊泡运动、主穗一/二次枝梗与依赖DNA的转录、株高与大分子代谢过程、主穗颖花数与花粉识别、有效穗数与水解酶活性、单株实粒重与嘌呤核苷结合等通路相关。为获得优良性状, 高配合力, 杂种优势可以从某一性状的相关通路进行研究, 找到调控该通路的相关基因, 以期为改良水稻一般配合力和获得杂种优势提供一定帮助。

关键词: 杂交水稻, GWAS, 通路分析, 配合力, 杂种优势

Abstract:

In order to provide theoretical foundation of cultivating and improving rice, under North Carolina design II, we constructed test cross population and conducted pathway analysis of phenotype performance, combining ability and heterosis of agronomic trait in present study. The experiments’ results reveal that the filled grains per panicle, 1000-grain weight, main panicle length, primary/secondary branch of main panicle, plant height, spikelet per panicle, tillers per plant, and yield per plant were separately related to pathway of biological regulation, cysteine and methionine metabolism, snare interactions in vesicular transport, DNA-dependent transcription, macromolecular metabolism, recognition of pollen, hydrolase activity, purine nucleoside binding and so on. Therefore, in order to obtain elite hybrids with high combining ability and heterosis, it is feasible to start from studying related pathways of a certain trait and related genes regulating the pathway.

Key words: hybrid rice, GWAS, pathway analysis, combining ability, heterosis

图1

4个数据集所含通路 V: 父本表型; GCA: 父本一般配合力; TC: 测交群体表型; BP: 测交群体的超亲优势值。"

表1

4个数据集共有的通路"

通路Pathway 类别Category 描述Description
CATALYTIC_ACTIVITY GO:0003824 催化活性Catalytic activity
CATION_BINDING GO:0043169 阳离子结合Cation binding
ION_BINDING GO:0043167 离子结合Ion binding
METABOLIC_PROCESS GO:0008152 代谢过程Metabolic process
PRIMARY_METABOLIC_PROCESS GO:0044238 初级代谢过程Primary metabolic process

图2

4个数据集9个性状通路结果 FGPP: 主穗实粒数; KGW: 千粒重; MPL: 主穗长; PBP: 主穗一次枝梗数; PH: 株高; SBP: 主穗二次枝梗数; SPP: 主穗颖花数; TP: 有效穗数; YD: 单株实粒重。"

表2

4个数据集不同性状个数所含的通路个数"

数据集
Dataset
性状个数
Number of traits
通路个数
Number of pathways
V 1 86
2 13
3 1
GCA 1 52
2 11
3 11
4 25
5 7
6 1
TC 1 51
2 20
3 32
4 4
5 7
7 1
8 3
BP 1 33
[1] Beló A, Zheng P Z, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A . Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008,279:1-10.
[2] Yonemaru J, Mizobuchi R, Kato H, Yamamoto T, Yamamoto E, Matasubara K, Hirabayashi H, Takeuchi Y, Tsunematsu H, Ishii T . Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC Genomics, 2014,15:346.
[3] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B . Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961-967.
[4] 王彩红 . 水稻苗期稻瘟病抗性的全基因组关联分析. 中国农业科学院博士论文, 北京, 2014.
Wang C H . Genome-wide Association Study of Rice Seedling Resistance to Blast. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract).
[5] Wang K, Li M, Bucan M . Pathway-based approaches for analysis of genome-wide association studies. Am J Hum Genet, 2007,81:1278-1283.
[6] Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Jim M D, Xu S Z, Zhang Y M . Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016,6:19444.
[7] Hirschhorn J N . Genomewide association studies-illuminating biologic pathways. N Engl J Med, 2009,360:1699-1701.
[8] 王钰嫣, 王子兴, 胡耀达, 王蕾, 李宁, 张彪, 韩伟, 姜晶梅 . 全基因组关联研究通路分析方法现状. 遗传, 2017,39:707-716.
Wang Y Y, Wang Z X, Hu Y D, Wang L, Li N, Zhang B, Han W, Jiang J M . Current status of pathway analysis in genome-wide association study. Hereditas (Beijing), 2017,39:707-716 (in Chinese with English abstract).
[9] 张远森 . 基于通路分析法诠释水稻农艺性状全基因组关联研究. 昆明理工大学硕士学位论文, 云南昆明, 2015.
Zhang Y S . Explanation the Genome-wide Association Study of Agronomic Traits in Rice by Pathway. MS Thesis of Kunming University of Science and Technology, Kunming, Yunnan, China, 2015 (in Chinese with English abstract).
[10] 张征, 张雪丽, 莫博程, 代志军, 胡中立, 李兰芝, 郑兴飞 . 籼型杂交水稻农艺性状的配合力研究. 作物学报, 2017,43:1448-1457.
Zhang Z, Zhang X L, Mo B C, Dai Z J, Hu Z L, Li L Z, Zheng X F . Combining ability analysis of agronomic trait in indica × indica hybrid rice. Acta Agron Sin, 2017,43:1448-1457 (in Chinese with English abstract).
[11] Liu C, Song G Y, Zhou Y H, Qu X F, Guo Z B, Liu Z W, Jiang D M, Yang D C . OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep, 2015,5:12803.
[12] 付新民, 王岩, 高冠军, 何予卿 . 利用水稻重组自交系进行配合力遗传分析. 华中农业大学学报, 2010,29:397-402.
Fu X M, Wang Y, Gao G J, He Y Q . Combining ability analysis in rice using recombinant inbred lines. J Huazhong Agric Univ, 2010,29:397-402 (in Chinese).
[13] 梁康迳 . 基因型×环境互作效应对水稻穗部性状杂种优势的影响. 应用生态学报, 1999,10:683-688.
Liang K J . Interactive effect of genotype and environment on heterosis of panicle traits of rice (Oryza sative L.). Chin J Appl Ecol, 1999,10:683-688 (in Chinese with English abstract).
[14] Tang Y, Liu X L, Wang J B, Li M, Wang Q S, Tian F, Su Z B, Pan Y C, Liu D, Su Z B, Pan Y C, Lipka A E, Buckler E S, Zhang Z W . GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome-US, 2016,9:1-9.
[15] 王杰, 刘璐, 刘杰, 赵桂苹, 刘冉冉, 郑麦青, 文杰 . 基于通路分析方法诠释肉鸡体重性状全基因组关联研究. 畜牧兽医学报, 2017,48:810-817.
Wang J, Liu L, Liu J, Zhou G P, Liu R R, Zheng M Q, Wen J . Genome-wide association study on body weight traits of broilers based on pathway. Acta Veter Zootech Sin, 2017,48:810-817 (in Chinese with English abstract).
[16] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H . A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010,22:3280-3294.
[17] Mao H, Sun S, Yao J L, Wang C G, Yu S B, Xu C G, Li X H, Zhang Q F . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
[18] Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T, Xia J X, Wang L, Wu H B, Liu Y G . Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008,105:18871-18876.
[19] 鲍永美 . 水稻SNARE蛋白基因的克隆与功能分析. 南京农业大学硕士学位论文, 江苏南京, 2007.
Bao Y M . Cloning and Functional Analysis of SNARE Protein Genes from Rice (Oryza sativa L.). MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007 (in Chinese with English abstract).
[20] Yaish M W, El-Kereamy A, Zhu T, Beatty P H, Good A G, Bi Y M, Rothstein S J . The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet, 2010,6:e1001098.
[21] Li M, Xiong G Y, Li R, Cui J J, Tang D, Zhang B C, Pauly M, Cheng Z K, Zhou Y H . Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J, 2009,60:1055-1069.
[22] 石晗 . 不同类型水稻种质资源农艺性状鉴定与抗逆性筛选. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Shi H . Evaluation of Agronomic Traits and Screening of Stress Resistance in Different Types of Rice Germplasm. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[23] 黄利兴, 游年顺, 雷捷成, 郑向华 . 杂交水稻配合力分析及高产地优组合选配的探讨. 福建稻麦科技, 1994, (12):11-17.
Huang L X, You N S, Lei J C, Zheng X H . Analysis of combining ability of hybrid rice and selection of high-yield combinations. Fujian Sci & Technol Rice & Wheat, 1994, (12):11-17 (in Chinese with English abstract).
[24] 廖伏明, 周坤炉, 盛孝邦, 阳和华, 徐秋生 . 籼型三系杂交水稻主要农艺性状配合力研究. 作物学报, 1999,25:622-631.
Liao F M, Zhou K L, Sheng X B, Yang H H, Xu Q S . Studies on combining ability of major agronomic characters in three-line indica hybrid rice. Acta Agron Sin, 1999,25:622-631 (in Chinese with English abstract).
[25] 王玉 . 利用复合性状开展QTL作图的有效性研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2010.
Wang Y . On the Use of Mathematically-derived Composite Traits and Their Efficiency in Quantitative Trait Locus Mapping. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2010 (in Chinese with English abstract).
[26] Li J M, Xiao J H, Grandillo S, Jiang L Y, Wan Y Z, Deng Q Y, Yuan L P, McCouch S R . QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African(O. glaberrima S.) rice. Genome, 2004,47:697-704.
[27] Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J . Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004,137:325-332.
[1] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[2] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[3] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[4] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[5] 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813.
[6] 董婧,逯晓萍,张坤明,薛春雷,张瑞霞. 高丹草杂种及其亲本转录组SNP及等位基因特异性表达分析[J]. 作物学报, 2018, 44(12): 1809-1817.
[7] 张征,张雪丽,莫博程,代志军,胡中立,李兰芝,郑兴飞. 籼型杂交水稻农艺性状的配合力研究[J]. 作物学报, 2017, 43(10): 1448-1457.
[8] 王博新,王亚辉,陈朋飞,刘徐冬雨,冯志前,郝引川,张仁和,张兴华,薛吉全*. 源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析[J]. 作物学报, 2017, 43(09): 1328-1336.
[9] 沈杭琪,胡伟民,林程,关亚静,刘宏友,安建宇,胡晋. 不同脱水剂对杂交水稻制种种子质量及基因表达的影响[J]. 作物学报, 2017, 43(09): 1308-1318.
[10] 杨慧丽,林亚楠,张怀胜,卫晓轶,丁冬,薛亚东. 玉米开花期性状的QTL及杂种优势位点定位[J]. 作物学报, 2017, 43(05): 678-690.
[11] 徐富贤,张林, 熊洪,周兴兵,朱永川, 刘茂,蒋鹏,郭晓艺. 杂交水稻中后期洪涝淹没与产量损失的关系[J]. 作物学报, 2016, 42(09): 1381-1390.
[12] 于亚辉,刘郁,李振宇,陈广红,徐正进,唐亮,毛艇,徐海. 亲本籼粳成分与两系杂交粳稻杂种优势的关系及遗传基础[J]. 作物学报, 2016, 42(05): 648-657.
[13] 韩平安,逯晓萍,米福贵,张瑞霞,李美娜,薛春雷,董婧,丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析[J]. 作物学报, 2016, 42(05): 696-705.
[14] 朱丽伟,曹栋栋,付玉营,胡琦娟,利站,关亚静,胡伟民,胡晋. 可溶性寡糖和小分子的热激蛋白与杂交水稻种子成熟过程中发芽能力及种子活力相关[J]. 作物学报, 2016, 42(05): 714-724.
[15] 彭倩,薛亚东,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报, 2016, 42(04): 482-491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!