欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 290-299.doi: 10.3724/SP.J.1006.2020.93027

• 耕作栽培·生理生化 • 上一篇    下一篇

滴灌玉米临界氮稀释曲线与氮素营养诊断研究

付江鹏,贺正,贾彪(),刘慧芳,李振洲,刘志   

  1. 宁夏大学农学院, 宁夏银川 750021
  • 收稿日期:2019-04-19 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-12-11
  • 通讯作者: 贾彪
  • 作者简介:E-mail: fjp951208@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31560339);宁夏高等学校科研项目资助(NGY2017025)

Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation

FU Jiang-Peng,HE Zheng,JIA Biao(),LIU Hui-Fang,LI Zhen-Zhou,LIU Zhi   

  1. School of Agriculture Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2019-04-19 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-12-11
  • Contact: Biao JIA
  • Supported by:
    The study was supported by the National Natural Science Foundation of China(31560339);the Ningxia Higher Education Research Project(NGY2017025)

摘要:

旨在建立宁夏引黄灌区滴灌玉米临界氮稀释曲线模型, 探讨氮营养指数(NNI)用于实时诊断和评价玉米氮素营养状况的可行性, 为实现滴灌玉米合理施用氮肥提供理论依据。以天赐19为试验材料, 采用滴灌水肥一体化技术, 设6个氮肥水平, 利用2年定位试验构建并验证了临界氮稀释曲线模型。结果表明: (1)在一定范围内, 滴灌玉米干物质积累量随施氮水平的提高而增加, 根据方差分析结果, 将玉米各生育时期的地上部生物量分为限氮和非限氮2类; (2)滴灌玉米植株氮浓度均随着施氮量的增加而提高, 但随生育期的推进和地上部干物质量的增加, 玉米植株氮浓度均呈下降趋势; (3)滴灌玉米临界氮浓度(Nc)、最大氮浓度(Nmax)和最小氮浓度(Nmin)稀释模型与地上部干物质累积量之间均呈现幂函数关系, 其决定系数R 2分别为0.982、0.907、0.918, 利用均方根误差(RMSE)和标准化均方根误差(n-RMSE)的验证表明, 该模型稳定性好, 误差范围小; (4)氮素营养指数模型(NNI)可衡量滴灌玉米氮素营养状况, 滴灌水肥一体化条件下, 宁夏引黄灌区玉米以270 kg hm -2为最佳施氮量; (5)根据模型推算, NNI与相对吸氮量(RNupt)、相对地上部生物量(RDW)和相对产量(RY)均极显著相关。本研究所建立的滴灌玉米临界氮稀释曲线模型和氮营养指数模型, 能够精准地预测水肥一体化条件下玉米小喇叭口期至成熟期的氮素营养状况, 为优化玉米的氮素管理提供指导。

关键词: 水肥一体化, 玉米, 植株氮浓度, 临界氮稀释曲线, 氮营养指数

Abstract:

The objective of this study was to establish the critical nitrogen dilution curve of maize in Yellow River irrigation area of Ningxia province, China, and to study the feasibility of the nitrogen nutrition index model (NNI) for real-time diagnosing and evaluating nitrogen nutrition in maize, which would provide theoretical basis for rational nitrogen fertilization of drip-irrigated maize. The research was carried out with ‘Tianci 19’, using the integrated technology of drip irrigation and fertilizer with six nitrogen levels. The critical nitrogen dilution curve model was constructed and verified by a 2-year fixed position experiment. Within a certain range, the dry matter accumulation of drip-irrigated maize increased with the increase of nitrogen application rate. According to the variance analysis, the aboveground biomass in maize growth period was divided into two types: nitrogen limited and nitrogen non-limited. The nitrogen concentration of drip-irrigated maize plant increased with the increase of nitrogen application rate, while decreased with the extension of growth period and the increase of aboveground dry matter weight. The critical nitrogen concentration (Nc), maximum nitrogen concentration (Nmax) and minimum nitrogen concentration (Nmin) dilution models of drip irrigated maize showed a power function relationship with the aboveground dry matter accumulation, with the determination coefficient R 2 of 0.982, 0.907, and 0.918, respectively. The verification using root mean square error (RMSE) and normalized root mean square error (n-RMSE) showed that the model had good stability and small error range. NNI can be used to measure the nitrogen nutrition status of drip-irrigated maize. Under the integration condition with drip-irrigation and fertilizer, the optimal nitrogen application rate for maize grown in Yellow River irrigation area of Ningxia should be 270 kg hm -2. According to the model calculations of, NNI with relative nitrogen uptake (RNupt), relative aboveground biomass (RGW) and relative yield (RY) reached extremely significant levels. The critical nitrogen dilution curve model and nitrogen nutrition index model established in this study can accurately predict the nitrogen nutrition status of maize from the bell stage to the maturity stage under the integrated condition with water and fertilizer, so as to provide guidance for optimizing the nitrogen management of maize.

Key words: water-fertilizer integration, maize, plant nitrogen concentration, critical nitrogen dilution curve, nitrogen nutrition index

图1

玉米生育期气象条件"

表1

试验地土壤基础肥力"

年份
Year
pH 有机质
OM
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
碱解氮
Avail. N
(mg kg-1)
速效磷
Avail. P
(mg kg-1)
速效钾
Avail. K
(mg kg-1)
2017 7.98 11.45 0.80 0.51 37.37 19.04 102.52
2018 7.65 12.82 0.75 0.48 36.82 17.37 95.31

表2

滴灌玉米地上部干物质积累量动态变化"

年份
Year
生育时期
Growing period
地上部生物量Aboveground biomass (t hm-2)
N0 N90 N180 N270 N360 N450
2017 V10 1.24±0.24 c 1.31±0.18 bc 1.52±0.76 bc 1.75±0.56 abc 2.19±0.11 ab 2.53±0.57 a
V13 3.05±0.80 d 3.56±0.39 cd 3.64±0.32 cd 3.96±0.09 bc 4.59±0.17 ab 4.77±0.21 a
R1 4.43±0.89 c 4.9±0.30 bc 5.04±0.43 bc 6.21±1.11 ab 7.34±1.19 a 7.66±0.88 a
R3 6.43±0.47 c 6.58±0.36 c 7.40±0.67 c 8.95±0.64 b 10.44±0.50 a 11.02±0.84 a
R5 8.99±0.61 c 9.75±0.12 c 11.80±0.12 b 12.08±0.93 b 13.40±0.43 a 13.12±0.55 a
R6 10.88±0.74 d 12.93±0.32 c 14.04±0.76 b 15.11±0.09 a 15.42±0.86 a 15.14±0.14 a
2018 V10 1.35±0.21 b 1.50±0.29 b 1.51±0.06 b 1.57±0.17 b 1.73±0.93 a 1.74±0.32 a
V13 1.89±0.29 c 2.48±0.44 b 2.53±0.10 b 2.86±0.19 b 3.26±0.06 a 3.48±0.08 a
R1 4.95±0.40 d 5.79±0.65 cd 6.25±0.61 bc 6.62±0.48 ab 7.78±0.92 ab 8.76±0.89 a
R3 6.27±0.61 d 7.16±0.59 c 8.80±0.17 b 8.92±0.12 b 10.91±0.46 a 10.79±0.42 a
R5 8.92±0.91 c 9.91±0.51 bc 10.44±1.11 bc 11.21±0.89 b 13.26±1.08 a 12.91±0.76 a
R6 10.03±0.52 e 11.06±0.29 d 12.55±0.73 c 13.47±0.13 b 16.08±0.47 a 14.82±0.45 a

图2

滴灌玉米植株氮浓度动态变化 缩写同表2。"

图3

滴灌玉米临界氮浓度稀释曲线"

图4

滴灌玉米临界氮浓度稀释曲线模型验证"

图5

滴灌玉米氮营养指数动态变化 NNI: 氮营养指数。缩写同表2。"

图6

滴灌玉米氮营养指数与相对吸氮量的关系 NNI: 氮营养指数; RNupt: 相对吸氮量。缩写同表2。"

图7

滴灌玉米氮营养指数与相对地上部生物量的关系 NNI: 氮营养指数; RDW: 相对地上部生物量。缩写同表2。"

图8

滴灌玉米氮营养指数与相对产量的关系 NNI: 氮营养指数; RY: 相对产量。"

[1] Mosisa W, Marianne B, Gunda S, Dennis F, Alpha O D, Walter J H . Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci, 2007,47:519-528.
doi: 10.1371/journal.pone.0199492 pmid: 29949626
[2] Judith N, Adrien N D, Martin H C, Marc R L . Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Sci Soc Am, 2009,73:317-327.
doi: 10.2136/sssaj2007.0374
[3] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[4] Ziadi N, Brassard M, Bélanger G, Cambouris A N, Tremblay N N, Michel C, Claessens A, Parent L . Critical nitrogen curve and nitrogen nutrition index for corn in eastern canada. Agron J, 2008,100:271-276.
doi: 10.2134/agronj2007.0059
[5] Greenwood D J, Gastal F, Lemaire G . Growth rate and %N of field grown crops: theory and experiments. Ann Bot, 1991,67:181-190.
doi: 10.1093/oxfordjournals.aob.a088118
[6] Greenwood D J, Lemaire G, Goss P, Cruz A . Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot, 1990,66:425-436.
doi: 10.1093/oxfordjournals.aob.a088044
[7] Lemaire G, Gastal F, Cruz P, Greenwood D J, Draycott A. Relationships between plant-N, plant mass and relative growth rate for C3 and C4 crops. In: Scaife A ed. Proceedings of the First European Society of Agronomy Congress, Paris, France, 1990. pp 1-5.
[8] Huang S Y . A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere, 2018,28:814-822.
[9] 吕茹洁, 商庆银, 陈乐, 曾勇军, 胡水秀, 杨秀霞 . 水稻基于临界氮浓度的水稻氮素营养诊断研究. 植物营养与肥料学报, 2018,24:1396-1405.
Lyu R J, Shang Q Y, Chen L, Zeng Y J, Hu S X, Yang X X . Diagnostic study of nitrogen nutrition in rice based on critical nitrogen concentration. J Plant Nutr Fert, 2018,24:1396-1405 (in Chinese with English abstract).
[10] Zia D N, Belanger G, Claessens A . Determination of a critical nitrogen dilution curve for spring wheat. Agron J, 2010,102:241-250.
doi: 10.2134/agronj2009.0266
[11] 李正鹏, 冯浩, 宋明丹 . 关中平原冬小麦临界氮稀释曲线和氮营养指数研究. 农业机械学报, 2015,46(10):177-183.
Li Z P, Feng H, Song M D . Study on critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong Plain. Trans CSAM, 2015,46(10):177-183 (in Chinese with English abstract).
[12] Giletto C M, Echeverría H E . Critical nitrogen dilution curve for processing potato in Argentinean humid pampas. Am J Potato Res, 2012,89:102-110.
doi: 10.1007/s12230-011-9226-z
[13] 马露露, 吕新, 张泽, 马革新, 海兴岩 . 基于临界氮浓度的滴灌棉花氮素营养诊断模型研究. 农业机械学报, 2018,49(2):277-283.
Ma L L, Lyu X, Zhang Z, Ma G X, Hai X Y . Study on nitrogen nutrition diagnosis model of cotton under drip irrigation based on critical nitrogen concentration. Trans CSAM, 2018,49(2):277-283 (in Chinese with English abstract).
[14] 石小虎, 蔡焕杰 . 基于叶片SPAD估算不同水氮处理下温室番茄氮营养指数. 农业工程学报, 2018,34(17):124-134.
Shi X H, Cai H J . Estimation of nitrogen nutrition index of greenhouse tomato under different water and nitrogen treatment based on leaf SPAD. Trans CSAE, 2018,34(17):124-134 (in Chinese with English abstract).
[15] Plénet D, Lemaire G . Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops, determination of critical N concentration. Plant Soil, 1999,216:65-82.
doi: 10.1023/A:1004783431055
[16] Herrmann A, Taube F . The range of the critical N dilution curve for maize can be extended until silage maturity. Agron J, 2004,96:1131-1138.
doi: 10.2134/agronj2004.1131
[17] Ziadi N, Brassard M, Bélanger G, Cambouris A N, Tremblay N, Nolin M C, Claessens A, Parent L E . Critical N curve and N nutrition index for corn in Eastern Canada. Agron J, 2008,100:271-276.
doi: 10.2134/agronj2007.0059
[18] Yue S C, Sun F L, Meng Q F . Validation of a critical nitrogen curve for summer maize in the north China plain. Pedosphere, 2014,24:76-83.
[19] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利 . 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013,39:292-299.
doi: 10.3724/SP.J.1006.2013.00292
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L . Study on critical nitrogen dilution curve and nitrogen nutrition index of summer maize in north China. Acta Agron Sin, 2013,39:292-299 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00292
[20] 李正鹏, 宋明丹, 冯浩 . 关中地区玉米临界氮浓度稀释曲线的建立和验证. 农业工程学报, 2015,31(13):135-141.
Li Z P, Song M D, Feng H . Establishment and verification of dilution curve of critical nitrogen concentration in maize in Guanzhong area. Trans CSAE, 2015,31(13):135-141(in Chinese with English abstract).
[21] 银敏华, 李援农, 谷晓博, 周昌明, 董丽利, 张天乐 . 氮肥运筹对夏玉米氮素盈亏与利用的影响. 农业机械学报, 2015,46(10):167-176.
Yin M H, Li Y N, Gu X B, Zhou C M, Dong L L, Zhang T L . Effects of nitrogen fertilizer management on nitrogen profit and loss and utilization of summer maize. Trans CSAM, 2015,46(10):167-176 (in Chinese with English abstract).
[22] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良 . 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019,25:123-133.
An Z C, Huang Y F, Wang Y, Zhao Y N, Yue S H, Shi H B, Ye Y L . Dilution model of critical nitrogen concentration and nitrogen nutrition in summer maize with different nitrogen efficiency. J Plant Nutr Fert, 2019,25:123-133 (in Chinese with English abstract).
[23] 王永宏 . 宁夏玉米栽培. 北京: 中国农业科学技术出版社, 2014. pp 17-19.
Wang Y H. Corn Cultivation in Ningxia. Beijing: China Agricultural Science and Technology Press, 2014. pp 17-19(in Chinese).
[24] Brye K R, Norman J M, Gower S T . Methodological limitations and N-budget differences among a restored tallgrass prairie and maize agroecosystems. Agric Ecosyst Environ, 2003,97:181-198.
doi: 10.1016/S0167-8809(03)00067-7
[25] Allen R G . Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol, 2000,229:27-41.
doi: 10.1016/S0022-1694(99)00194-8
[26] Justes E, Mary B, Meynard J M . Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot, 1994,74:397-407.
doi: 10.3389/fpls.2017.01517 pmid: 28928757
[27] Willmott C J . Some comments on the evaluation of model performance. Bull Am Meteorol Soc, 1982,63:1309-1369.
doi: 10.1016/j.jsurg.2019.06.012 pmid: 31281109
[28] Yang J, Greenwood D J, Rowell D L . Statistical methods for evaluating a crop nitrogen simulation model, N-ABLE. Agric Syst, 2000,64:37-53.
doi: 10.1016/S0308-521X(00)00010-X
[29] Jamieson P D, Porter J R, Wilson D R . A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991,27:337-350.
doi: 10.1016/0378-4290(91)90040-3
[30] Lemaire G, Onillon B, Onillon G . Nitrogen distribution within a Luceme canopy during regrowth: relation with light distribution. Ann Bot, 1991,68:483-488.
doi: 10.1093/oxfordjournals.aob.a088286
[31] 赵如浪, 杨滨齐, 王永宏, 赵健, 张文杰, 孙发国, 谢铁娜 . 宁夏高产玉米群体产量构成及生长特性研究. 玉米科学, 2014,22(3):60-66.
Zhao R L, Yang B Q, Wang Y H, Zhao J, Zhang W J, Sun F G, Xie T L . Yield structure and growth characteristics of high yield maize population in Ningxia. J Maize Sci, 2014,22(3):60-66 (in Chinese with English abstract).
[32] Liu J L, Zhan A, Bu L D, Zhu L, Luo S S, Chen X P, Cui Z L, Li S Q, Hill R L, Zhao Y . Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agron J, 2014,106:390-396.
doi: 10.2134/agronj2013.0404
[33] Yue S, Sun F, Meng Q, Zhao R, Li F, Chen X, Zhang F . Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere, 2014,24:76-83.
[34] Lemaire G, Gastal F . Nitrogen Uptake and Distribution in Plant Canopies Diagnosis of the Nitrogen Status in Crops. Heidelberg: Springer-Verlag Publishers, 1997, ( 3):3-43.
[35] 张富仓, 严富来, 范兴科, 李国栋, 刘翔, 陆军胜, 王英, 麻玮青 . 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响. 农业工程学报, 2018,34(22):111-120.
Zhang F C, Yan F L, Fan X K, Li G D, Liu X, Liu J S, Wang Y, Ma W Q . Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia. Trans CSAE, 2018,34(22):111-120 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!