欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1456-1463.doi: 10.3724/SP.J.1006.2020.94191

• 研究简报 • 上一篇    

马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果

武超(), 刘贤文, 张炜, 王琼*(), 郭华春*()   

  1. 云南农业大学农学与生物技术学院薯类作物研究所, 云南昆明 650201
  • 收稿日期:2019-12-09 接受日期:2020-04-15 出版日期:2020-09-12 网络出版日期:2020-05-08
  • 通讯作者: 王琼,郭华春
  • 作者简介:E-mail: 1371757245@qq.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(马铃薯, CARS-09-15P)资助

Control effects of different potato varieties (lines) and rice-potato rotation system on root-knot nematode

WU Chao(), LIU Xian-Wen, ZHANG Wei, WANG Qiong*(), GUO Hua-Chun*()   

  1. Tuber and Root Crops Research Institute, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2019-12-09 Accepted:2020-04-15 Published:2020-09-12 Published online:2020-05-08
  • Contact: Qiong WANG,Hua-Chun GUO
  • Supported by:
    China Agriculture Research System (Potato, CARS-09-15P).

摘要:

根结线虫病是马铃薯连作减产的主要原因之一。为研究根结线虫病的农艺防治措施, 本文开展了品种抗性评价、稻、薯轮作和土壤淹水下的线虫消减动态研究。抗性评价试验表明, 18个品种(系)中没有筛选到同时抗南方根结线虫和爪哇根结线虫的材料, 品系1002-1和品种丽薯6号相对抗性较好, 青薯9号和合作88相对敏感。马铃薯根结线虫发病土壤中可同时检测到卵、幼虫和成虫等不同形态。水旱轮作试验表明, 经一茬水稻栽培可使土壤中根结线虫虫态完全消失, 再种植马铃薯也不再发生根结线虫病, 且马铃薯有效产量显著提高, 青薯9号、合作88和丽薯6号的单株有效产量较对照分别提高50.5%、43.7%和26.0%, 差异均极显著, 1002-1单株有效产量与对照差异不显著。由此可见, 稻、薯轮作根结线虫防治效果明显。为进一步探索水旱轮作的防治机制, 观察了土壤淹水进程中各种虫态消减动态。结果表明, 在淹水过程中, 根结线虫的卵、幼虫和成虫不同虫态此消彼长, 要淹水60 d以上, 土壤中才检测不到所有形态虫体。水早轮作中水稻生长期淹水时间足够长, 满足防治线虫的淹水条件。因此结合抗病品种选用进行稻、薯轮作是防治马铃薯根结线虫病既绿色环保又可持续有效的方法。

关键词: 马铃薯, 品种(系), 稻、薯轮作, 根结线虫病, 防治效果

Abstract:

Root-knot nematode disease, induced by Meloidogyne incognita and Meloidogyne javanica, is one of the main reasons of crop failure in potato continuous cropping in Yunnan province. Variety resistance evaluation, rice-potato rotation model and dynamic changes were studied in order to assess the protect-and-control treatment of potato root-knot nematode disease. Variety resistance evaluation, rice-potato rotation model and dynamic changes were all studied in order to evaluate the protect-and-control treatment of potato root-knot nematode disease. The results from the variety resistance evaluation indicated that among the 18 potato cultivars (lines) no resistant materials were screened resistant to both Meloidogyne incognita and Meloidogyne javanica, whereas the 1002-1 line and Lishu 6 displayed better disease resistance, Qingshu 9 and Cooperation 88 were more sensitive to potato root-knot nematode disease. All kinds of the egg, larva and imago of root-knot nematodes were simultaneously detected in soil with the root-knot nematodes disease. However, after rice-potato rotation, the egg, larva and imago of root-knot nematodes were to disappear entirely in soil, and the root knot nematode disease was no longer occurred in the following potato planting process. Furthermore, the tuber yield per plant of Qingshu 9, Cooperation 88 and Lishu 6 compared with control were significantly different increased by 50.5%, 43.7%, and 26.0%, respectively. These results suggested rice-potato rotation could be an effective way to control potato root knot nematode disease. In addition, to further analyzed the mechanism of rice-potato rotation inhibiting root-knot nematode survival, we observed the dynamic changes of the amount on root knot nematodes in the case of soil flooding. The results showed that no different states of the insect state were detected until submerged more than 60 days. Therefore, we speculated prolonged soil flooding may be the main reason for inhibiting the growth of root-knot nematodes. It is a sustainable and effective method to control potato root-knot nematode by selecting rice-potato rotation with disease-resistant varieties.

Key words: potatoes, varieties (lines), rice-potato rotation cropping, root-knot nematode, control effect

表1

每克土壤中根结线虫基数(条 g-1)"

样品编号
Number of samples
雌虫
Female worms
幼虫和雄虫
Larvae and male worms

Eggs
总数
Total
土样1 Soil samples 1 0.5±0.1 2.2±0.9 3.0±0.4 5.7±0.6
土样2 Soil samples 2 0.8±0.3 1.8±0.4 2.7±0.4 5.3±0.4
土样3 Soil samples 3 0.5±0 1.3±0.2 2.2±0.2 4.0±0.2

表2

不同马铃薯品种(系)对2种根结线虫抗性鉴定结果"

品种(系)
Variety
(lines)
线虫类型
Type of
Meloidogyne
spp.
根系Root 块茎Tuber
感病率
Susceptibility
rate (%)
病情指数
Susceptible
index
抗性
Resistance
level
感病率
Susceptibility
rate (%)
病情指数
Susceptible
index
抗性
Resistance
level
1002-1 M.i 0 0 IM 0 0 IM
M.j 11.11 16.67 HR 2.40 1.60 HR
CIP 81 M.i 44.44 37.04 MR 3.40 2.49 HR
M.j 0 0 IM 0 0 IM
CIP 88 M.i 40 27.50 MR 3.68 3.07 HR
M.j 0 0 IM 0 0 IM
CIP 164 M.i 30 26.67 MR 3.42 3.08 HR
M.j 0 0 IM 0 0 IM
丽薯6号 M.i 20 20 HR 4.35 4.35 HR
Lishu 6 M.j 0 0 IM 0 0 IM
CIP 50 M.i 40 33.33 MR 10.19 5.09 HR
M.j 0 0 IM 0 0 IM
CIP 58 M.i 50 43.33 MR 15.22 9.06 HR
M.j 0 0 IM 0 0 IM
CIP 57 M.i 50 36.67 MR 10.10 9.60 HR
M.j 0 0 IM 0 0 IM
合作88 M.i 71.43 61.90 MS 22.09 12.79 HR
Cooperation 88 M.j 0 0 IM 0 0 IM
CIP 64 M.i 90 67.50 MS 33.88 21.21 HR
M.j 0 0 IM 0 0 IM
青薯9号 M.i 90 66.67 MS 36.54 22.60 HR
Qingshu 9 M.j 30 26.67 MR 8.91 7.92 HR
西海 35
Xihai 35
M.i 80 62.50 MS 27.55 25.00 HR
M.j 0 0 IM 0 0 IM
2013-16D1 M.i 60 60 MS 29.63 27.78 MR
M.j 0 0 IM 0 0 IM
中薯20号 M.i 100 73.33 MS 42.31 28.85 MR
Zhongshu 20 M.j 40 30 MR 7.69 7.69 HR
3S-24 M.i 100 85.00 HS 41.77 29.11 MR
M.j 0 0 IM 0 0 IM
中薯18号 M.i 100 88.89 HS 51.39 33.10 MR
Zhongshu 18 M.j 80 70 HS 6.56 8.20 HR
滇薯701 M.i 70 55.00 MS 39.53 38.37 MR
Dianshu 701 M.j 0 0 IM 0 0 IM
滇同1号 M.i 100 83.33 HS 42.86 39.29 MR
Diantong 1 M.j 0 0 IM 0 0 IM

表3

水旱轮作后块茎、根系和土壤中根结线虫情况统计"

作物
Crops
块茎线虫
Nematodes
of tuber
根系线虫
Nematodes
of root
土壤线虫
Nematodes of soil
相对防治效果
Relative control
effect (%)
一茬 青薯9号-青薯9号 Qingshu 9-Qingshu 9 + + +
First 滇杂36-青薯9号 Yunnan miscellaneous 36-Qingshu 9 - - 100
crop 合作88-合作88 Cooperation 88-Cooperation 88 + + +
Apr., 2017 滇杂36-合作88 Yunnan miscellaneous 36-Cooperation 88 - - 100
丽薯6号-丽薯6号 Lishu 6-Lishu 6 + + +
滇杂36-丽薯6号 Yunnan miscellaneous 36-Lishu 6 - - 100
1002-1-1002-1 + + +
滇杂36-1002-1 Yunnan miscellaneous 36-1002-1 - - 100
二茬 青薯9号-青薯9号 Qingshu 9-Qingshu 9 + + +
Second 滇杂36-青薯9号 Yunnan miscellaneous 36 -Qingshu 9 - - - 100
crop 合作88-合作88 Cooperation 88-Cooperation 88 + + +
Nov., 2011 滇杂36-作88 Yunnan miscellaneous 36-Cooperation 88 - - - 100
丽薯6号-丽薯6号 Lishu 6-Lishu 6 + + +
滇杂36-丽薯6号 Yunnan miscellaneous 36-Lishu 6 - - - 100
1002-1-1002-1 + + +
滇杂36-1002-1 Yunnan miscellaneous 36-1002-1 - - - 100
三茬 青薯9号-青薯9号 Qingshu 9-Qingshu 9 + + +
Third 滇杂36-青薯9号 Yunnan miscellaneous 36-Qingshu 9 - - 100
crop 合作88-合作88 Cooperation 88-Cooperation 88 + + +
Apr., 2018 滇杂36-合作88 Yunnan miscellaneous 36-Cooperation 88 - - 100
丽薯6号-丽薯6号 Lishu 6-Lishu 6 + + +
滇杂36-丽薯6号 Yunnan miscellaneous 36-Lishu 6 - - 100
1002-1-1002-1 + + +
滇杂36-1002-1 Yunnan miscellaneous 36-1002-1 - - 100
四茬 青薯9号-青薯9号 Qingshu 9-Qingshu 9 + + +
The 滇杂36-青薯9号 Yunnan miscellaneous 36-Qingshu 9 - - - 100
fourth 合作88-合作88 Cooperation 88-Cooperation 88 + + +
crop 滇杂36-合作88 Yunnan miscellaneous 36-Cooperation 88 - - - 100
Nov., 2018 丽薯6号-丽薯6号 Lishu 6-Lishu 6 + + +
滇杂36-丽薯6号 Yunnan miscellaneous 36-Lishu 6 - - - 100
1002-1-1002-1 + + +
滇杂36-1002-1 Yunnan miscellaneous 36-1002-1 - - - 100

图1

水旱轮作对马铃薯单株产量、单株有效产量、单株结薯数、块茎侵染率的影响 A: 水旱轮作对马铃薯单株产量的影响; B: 水旱轮作对马铃薯单株有效产量的影响; C: 水旱轮作对马铃薯结薯数的影响; D: 水旱轮作对马铃薯块茎侵染率的影响。Q9: 青薯9号; H88: 合作88; L6: 丽薯6号。不同小写字母表示处理间差异显著(P<0.05)。计算结果为第二茬和第四茬两季的平均值。"

图2

土壤中根结线虫密度随浸水时间的动态变化 Density 数字±数字: 根结线虫基础密度。"

[1] 潘柱, 梁石林, 梁冰. 信宜冬种马铃薯的气候条件分析. 气象研究与应用, 2012,33(S1):188-189.
Pan Z, Liang S L, Liang B. Analysis of climate conditions of winter potato in Xinyi. J Meteorol Res Appl, 2012,33(Sl):188-189 (in Chinese with English abstract).
[2] 蒙美莲. 中国马铃薯栽培生理研究进展. 见: 中国作物学会马铃薯专业委员会主编.中国马铃薯学术研讨会与第五届世界马铃薯大会论文集. 中国作物学会马铃薯专业委员会: 中国作物学会, 2004. p 1.
Meng M L. Research progress of potato cultivation physiology in China. In: Potato Professional Committee of Chinese Crop Society, eds. Symposium on Chinese Potato and Proceedings of the Fifth World Potato Congress. Potato Professional Committee of Chinese Crop Society: The Crop Science Society of China, 2004. p 1 (in Chinese).
[3] 张绍升. 植物线虫病害诊断与防治. 福州: 福建科学技术出版社, 1999. p 102.
Zhang S S. Diagnosis and Control of Plant Nematodes. Fuzhou: Fujian Science and Technology Press, 1999. p 102 (in Chinese).
[4] 陈品三, 彭德良, 郑经武. 马铃薯繁峙根结线虫新种(Meloidogyne fanzhiensisn sp.)之发现描述. 山西农业大学学报(自然科学版), 1990,10(1):55-60.
Chen P S, Peng D L, Zheng J W. Description of the Discovery of a new species of potato nematodes (Meloidogyne fanzhiensisn sp.). J Shanxi Agric Univ(Sci Edn), 1990,10(1):55-60 (in Chinese with English abstract).
[5] Garcia L E, Segura D M, Masuelli R W, Sanchezpuerta M V. Evaluating root-knot nematode infection in wild potatoes. Nematropica, 2014,44:31-36.
[6] 张云美. 我国根结线虫属(Meloidogyne Goeld, 1887)一新种. 山东大学学报(理学版), 1983, (2):88-95.
Zhang M Y. A new species of root knot nematodes (Meloidogyne Goeld, 1887) from China. J Shandong Univ(Nat Sci), 1983, (2):88-95 (in Chinese with English abstract).
[7] 杜宇, 丁元明, 寸东义, 曹云华, 周力兵, 刘忠善, 和捷. 输华马铃薯上哥伦比亚根结线虫风险分析. 植物保护, 2007,33(4):45-49.
Du Y, Ding Y M, Cun D Y, Cao Y H, Zhou L B, Liu Z S, He J. Risk analysis of Columbia root-knot nematode Meloidogyne chitwoodion potatoes in China. Plant Prot, 2007,33(4):45-49 (in Chinese with English abstract).
[8] 毛彦芝, 李春杰, 胡岩峰, 华萃, 尤佳, 王鑫鹏, 刘喜才, 杨耿斌, 王从丽. 评价黑龙江省主栽马铃薯品种及重要育种材料对北方根结线虫的抗性. 作物学报, 2017,43:1864-1869.
doi: 10.3724/SP.J.1006.2017.01864
Mao Y Z, Li C J, Hu Y F, Hua C, You J, Wang X P, Liu X C, Yang G B, Wang C L. Resistance evaluation of potato cultivars and germplasms to Meloidogyne hapla in Heilongjiang Province. Acta Agron Sin, 2017,43:1864-1869 (in Chinese with English abstract).
[9] 王晓强, 崔华栋, 谢勇, 董莹, 卫环宇, 王扬. 危害马铃薯块茎的根结线虫种类鉴定. 见: 中国植物病理学会病原线虫专业委员会主编. 第十二届全国植物线虫学术研讨会论文集. 中国植物病理学会病原线虫专业委员会: 中国植物病理学会, 2014. pp 105-110.
Wang X Q, Cui H D, Xie Y, Dong Y, Wei H Y, Wang Y. Species identification of root knot nematodes on potato tubers. In: Special Committee of Pathogenic Nematodes of Chinese society of Plant Pathology, eds. Proceedings of the 12th National Symposium on Plant Nematodes. Special Committee of pathogenic nematodes of Chinese society for Plant Pathology: Chinese Society for Plant Pathology, 2014. pp 105-110(in Chinese).
[10] 钟伟荣, 郑国组, 朱建军. 水旱轮作防治茄子青枯病. 上海蔬菜, 2000, (1):44.
Zhong W R, Zheng G Z, Zhu J J. Control of eggplant bacterial wilt by crop rotation. Shanghai Vegetables, 2000, (1):44 (in Chinese).
[11] 李泽森, 何卫蓉, 彭建波, 钟艳红, 蔡道辉, 黄增富, 向富勇, 杨顺华. 水旱轮作对龙山百合病虫草害的控制效应. 现代园艺, 2013, (18):9-10.
Li Z S, He W R, Peng J B, Zhong Y H, Cai D H, Huang Z F, Xiang F Y, Yang S H. Effects of flood and drought rotation on control of Lily Disease, insect infestation and grass infestation in Longshan. Modern Hortic, 2013, (18):9-10 (in Chinese).
[12] 曾光辉, 王法格. 单季稻——大棚草莓水旱轮作栽培技术. 现代园艺, 2010, (5):30-31.
Zeng G H, Wang F G. Single cropping rice—cultivation techniques of greenhouses strawberry crop rotation. Modern Hortic, 2010, (5):30-31 (in Chinese).
[13] 王海霞, 殷俊, 凌须美, 丁玉祥, 何静. 水旱轮作对设施番茄生长影响的初探. 农业装备技术, 2011,37(4):43-44.
Wang H X, Yan J, Ling X M, Ding Y X, He J. Study on the effect of crop rotation between flood and drought on tomato growth. Agric Equip Technol, 2011,37(4):43-44 (in Chinese).
[14] 杨云峰, 王伟男, 王克安, 谭德云, 吕晓惠, 张宝贤, 孙建磊, 刘红光. 蓖麻粕防治番茄根结线虫病探讨. 农业科技通讯, 2017, (1):41-43.
Yang Y F, Wang W N, Wang K A, Tan D Y, Lyu X H, Zhang B X, Sun J L, Liu H G. Study on prevention and treatment of tomato root knot nematode by castor meal. Agric Sci Technol Commun, 2017, (1):41-43 (in Chinese).
[15] 烟草品种抗病性鉴定. 中华人民共和国烟草行业标准, YC/T41-1996. p 2.
Identification of Disease Resistance of Tobacco Varieties. Tobacco Industry Standard of the People's Republic of China, YC/T41-1996. p 2 (in Chinese).
[16] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 22-24.
Bao S D. Agrochemical Analysis of Soil. Beijing: China Agriculture Press, 2000. pp 22-24(in Chinese).
[17] 刘维志. 植物病原线虫学. 北京: 中国农业出版社, 2000. p 379.
Liu W Z. Plant Pathogen Nematology. Beijing: China Agriculture Press, 2000. p 379 (in Chinese).
[18] 吴杨, 周会, 潘大仁. 甘蔗线虫病抗性基因的PCR检测研究. 作物学报, 2006,32:939-942.
Wu Y, Zhou H, Pan D R. PCR detection of nematode resistant gene in Sugarcane. Acta Agron Sin, 2006,32:939-942 (in Chinese with English abstract).
[19] 李梅云, 焦芳婵, 曾建敏, 王丙武, 宋中邦, 吴兴富, 李永平, 高玉龙, 李文正. 不同类型烟草新品种(系)对南方根结线虫的抗性鉴定. 烟草科技, 2017,50(11):22-26.
Li M Y, Jiao F C, Zeng J M, Wang B W, Song Z B, Wu X F, Li Y P, Gao Y L, Li W Z. Characterization of Meloidogyne incognita resistance in new tobacco varieties (lines). Tob Sci Technol, 2017,50(11):22-26 (in Chinese with English abstract).
[20] 席先梅, 白全江, 李玉民. 不同番茄品种抗根结线虫评价. 北方农业学报, 2016,44(4):50-52.
Xi X M, Bai Q J, Li Y M. Evaluation of tomato resistance to root knot nematodes. J North Agric, 2016,44(4):50-52 (in Chinese with English abstract).
[21] 孔祥义, 陈绵才. 根结线虫病防治研究进展. 热带农业科学, 2006,26(2):83-88.
Kong X Y, Chen M C. A review of control of root knot nematodes disease. Chin J Trop Agric, 2006,26(2):83-88 (in Chinese with English abstract).
[22] 计路芬. 白萝卜根结线虫的防治办法. 农业开发与装备, 2019, (5):219.
Ji L F. Control method of root knot nematode of white radish. Agric Develop Equip, 2019, (5):219 (in Chinese).
[23] 高忠奎, 蒋菁, 唐秀梅, 刘菁, 钟瑞春, 韩柱强, 熊发前, 黄志鹏, 吴海宁, 李战, 贺梁琼, 唐荣华. 水旱轮作条件下花生品种筛选及土壤特性变化分析. 南方农业学报, 2018,49:2403-2409.
Gao Z K, Jiang J, Tang X M, Liu J, Zhong R C, Han Z Q, Xiong F Q, Huang Z P, Wu H N, Li Z, He L Q, Tang R H. Peanut varieties selection and soil properties changes under paddy-upland rotation. J Southern Agric, 2018,49:2403-2409 (in Chinese with English abstract).
[24] 刘海霞. 大棚番茄根结线虫病的发病原因及防治措施. 植物医生, 2011,24(3):10-11.
Liu H X. The causes and control measures of tomato root knot nematode in greenhouse. Plant Doctor, 2011,24(3):10-11 (in Chinese).
[25] 张传功, 张吉民, 王璐, 刘清瑞. 番茄根结线虫病的发生特点与综合防治. 种业导刊, 2014, (11):20-21.
Zhang C G, Zhang J M, Wang L, Liu Q R. Occurrence characteristics and comprehensive control of tomato root knot nematode. J Seed Ind Guide, 2014, (11):20-21 (in Chinese).
[26] 肖克, 唐静, 李继福, 邹家龙, 朱建强. 长期水稻-冬油菜轮作模式下钾肥的适宜用量. 作物学报, 2017,43:1226-1233.
doi: 10.3724/SP.J.1006.2017.01226
Xiao K, Tang J, Li J F, Zou J L, Zhu J Q. Optimum amount of potassium fertilizer applied under continuous rice-rapeseed rotation. Acta Agron Sin, 2017,43:1226-1233 (in Chinese with English abstract).
[27] 刘维志. 植物病原线虫学. 北京: 中国农业出版社, 2000. pp 93-96.
Liu W Z. Plant Pathogen Nematology. Beijing: China Agriculture Press, 2000. pp 93-96(in Chinese).
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[10] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[11] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[12] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[13] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[14] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[15] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!