作物学报 ›› 2021, Vol. 47 ›› Issue (2): 197-209.doi: 10.3724/SP.J.1006.2021.02034
李兰兰(), 母丹, 严雪, 杨陆可, 林文雄*(), 方长旬*()
LI Lan-Lan(), MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong*(), FANG Chang-Xun*()
摘要: 苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL, EC 4.3.1.5)是调控酚酸类化感物质合成的关键酶。PAL在水稻中为多基因家族, 化感水稻 PI312777 和非化感水稻 Lemont 中, 相同 PAL 基因成员的启动子组成序列均存在差异, 并以 OsPAL2;3、OsPAL2;4 基因启动子序列的差异最大, 且 PI321777 的 OsPAL2;3 基因启动子的驱动活性高于Lemont。过表达 OsPAL2;3 基因, 使 PI312777 和 Lemont 的抑草率分别提高 11.11%和 5.56%。过表达 OsPAL2;3 同时增强 OsPAL2;3、OsC4H、OsCCA、OsCOL、OsOMT 等基因的表达, 增加水稻的原儿茶酸和香草酸含量。Co-IP 结合质谱鉴定结果显示, OsPAL2;3 蛋白与转酮醇酶、碳酸酐酶、果糖二磷酸醛缩酶、ATP 合酶 α 亚基、ATP 合酶 β 亚基等相互作用, 调控水稻的苯丙氨酸代谢途径。本研究表明, OsPAL2;3 的转录水平高低是 P1312777 和 Lemont 化感抑草能力差异的原因之一; OsPAL2;3 与多个蛋白互作共同调控酚酸类化合物合成, 该基因可用于提高水稻化感抑草能力的育种研究。
[1] | Rice E L. Allelopathy, 2nd edn. Orlando: Academic Press, 1984. pp 1-50. |
[2] | Lin W X, Fang C X, Chen T, Lin R Y, Xiong J, Wang H B. Rice allelopathy and its properties of molecular ecology. Front Biol, 2010,5:255-262. |
[3] | Weston L A, Duke S O. Weed and crop allelopathy. Crit Rev Plant Sci, 2003,22:367-389. |
[4] | 王海斌, 俞振明, 何海斌, 郭徐魁, 黄锦文, 周阳, 徐志斌, 林文雄. 不同化感潜力水稻化感效应与产量的关系. 中国生态农业学报, 2012,20:75-79. |
Wang H B, Yu Z M, He H B, Guo X K, Huang J W, Zhou Y, Xu Z B, Lin W X. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions Chin[J] Eco-Agric, 2012,20:75-79 (in Chinese with English abstract). | |
[5] |
徐正浩, 谢国雄, 周宇杰, 高屾. 三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用. 作物学报, 2013,39:537-548.
doi: 10.3724/SP.J.1006.2013.00537 |
Xu Z H, Xie G X, Zhou Y J, Gao S. Interference of rice with different morphological types and allelopathy on barnyardgrass under three planting patterns. Acta Agron Sin, 2013,39:537-548 (in Chinese with English abstract). | |
[6] |
Ye C Y, Tang W, Wu D, Jia L, Qiu J, Chen M, Mao L, Lin F, Xu H, Yu X, Lu Y, Wang Y, Olsen K M, Timko M P, Fan L. Genomic evidence of human selection on Vavilovian mimicry. Nat Ecol Evol, 2019,3:1474-1482.
pmid: 31527731 |
[7] |
Li L L, Zhao H H, Kong C H. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J Exp Bot, 2020,71:1540-1550.
doi: 10.1093/jxb/erz497 pmid: 31677347 |
[8] |
Kato-Noguchi H, Peters R J. The role of momilactones in rice allelopathy. J Chem Ecol, 2013,39:175-185.
pmid: 23385366 |
[9] |
Kong C H, Zhao H, Xu X H, Wang P, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007,55:6007-6012.
doi: 10.1021/jf0703912 pmid: 17602647 |
[10] | Rimando A M, Duke S O. Studies on rice allelochemicals. In: Smith C W, Dilday R H, eds. Rice: Origin, History, Technology and Production. New York: Wiley, 2003. pp 221-244. |
[11] | Zhang Q, Li L, Li J Y, Wang H B, Fang C X, Yang X Y, He H B. Increasing rice allelopathy by induction of barnyardgrass (Echinochloa crus-galli) root exudates. J Plant Growth Regul, 2018,37:745-754. |
[12] |
Fang C X, Li Y Z, Li C X, Li B L, Ren Y J, Zheng H P, Zeng X M, Shen L H, Lin W X. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ, 2015,38:1368-1381.
doi: 10.1111/pce.12492 pmid: 25438645 |
[13] |
Fang C X, Yu Y, Chen W S, Jian X, Wang Q S, Zheng H P, Lin W X. Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regul, 2016,79:265-273.
doi: 10.1007/s10725-015-0131-1 |
[14] |
He H B, Wang H B, Fang C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One, 2012,7:e37201.
doi: 10.1371/journal.pone.0037201 pmid: 22590655 |
[15] |
He H B, Wang H B, Fang CX, Wu H W, Guo X K, Lin C H, Lin Z H, Lin W X. Barnyardgrass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol, 2012,169:1747-1753.
pmid: 22939271 |
[16] |
Seal A N, Haig T, Pratley J E. Evaluation of putative allelochemicals in rice roots exudates for their role in the suppression of arrowhead root growth. J Chem Ecol, 2004,30:1663-1678.
doi: 10.1023/b:joec.0000042075.96379.71 pmid: 15537166 |
[17] |
Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004,30:1647-1662.
doi: 10.1023/b:joec.0000042074.96036.14 pmid: 15537165 |
[18] | Kim K W, Kim K U. Searching for rice allelochemicals. In: Kim K U, Shin D H, eds. Rice Allelopathy. Korea: Kyungpook National University, 2000. pp 83-95. |
[19] | Mattice J, Lavy T, Skulman B, Dilday R. Searching for Allelochemicals in Rice that Control Ducksalad. Manila: International Rice Research Institute, 1998. pp 81-98. |
[20] | Chou C H, Chiou S J. Autointoxication mechanism of Oryza sativa: II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J Chem Ecol, 1979,5:839-859. |
[21] | Chou C H, Lin H J. Autointoxication mechanism of Oryza sativa: I. Phytotoxic effects of decomposing rice residues in soil. J Chem Ecol, 1976,2:353-367. |
[22] |
Kuwatsuka S, Shindo H. Behavior of phenolic substances in the decaying process of plants: I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci Plant Nutr, 1973,19:219-227.
doi: 10.1080/00380768.1973.10432591 |
[23] |
Zheng X, Chen S, Li Q, Lin R, Lin W. Determination of phenolic acids in root exudates of allelopathic rice by solid phase extraction-ion chromatography with conductivity detection. Anal Lett, 2014,47:2156-2164.
doi: 10.1080/00032719.2014.900778 |
[24] | Li J Y, Zhang Q, Yang X Y, Wu H M, Lin R L, He H B. A reappraisal of the content and the differences of phenolic acids between allelopathic and non-allelopathic rice accessions. Allelopathy J, 2017,40:35-46. |
[25] |
Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol, 2007,33:1089-1103.
doi: 10.1007/s10886-007-9286-1 pmid: 17415624 |
[26] |
Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008,34:688-695.
doi: 10.1007/s10886-008-9455-x pmid: 18392895 |
[27] | Fang C X, He H B, Wang Q S, Qiu L, Wang H B, Zhuang Y E, Xiong J, Lin W X. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul, 2010,61:277-286. |
[28] | Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X. Analysis of gene expressions associated with increased allelopathy in rice induced by exogenous salicylic acid. Plant Growth Regul, 2009,57:163-172. |
[29] | 方长旬, 王清水, 余彦, 罗美蓉, 黄力坤, 熊君, 沈荔花, 林文雄. 不同胁迫条件下化感与非化感水稻PAL多基因家族的差异表达. 生态学报, 2011,31:4760-4767. |
Fang C X, Wang Q S, Yu Y, Luo M R, Huang L K, Xiong J, Shen L H, Lin W X. Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions. Acta Ecol Sin, 2011,31:4760-4767 (in Chinese with English abstract). | |
[30] |
Ayoubi T A, Van De Ven W J. Regulation of gene expression by alternative promoters. FASEB J, 1996,10:453-460.
pmid: 8647344 |
[31] | Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572. |
[32] |
Zhang Y, Su J, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011,7:30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694 |
[33] | 陈秋红, 陈太钰, 林拥军, 陈浩. 根癌农杆菌介导的粳稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174. |
Chen Q H, Chen T Y, Lin Y J, Chen H. Agrobacterium-mediated genetic transformation of japonica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174. | |
[34] | 刘瑜, 凌飞, 林拥军, 陈浩. 农杆菌介导的籼稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc. 1010175. |
Liu Y, Ling F, Lin Y J, Chen H. Agrobacterium-mediated transformation of indica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc.1010175. (in Chinese) | |
[35] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[36] |
Fang C X, Yang L K, Chen W X, Li L L, Zhang P L, Li Y Z, He H B, Lin W X. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. J Exp Bot, 2020,71:2127-2141.
pmid: 31811717 |
[37] |
Fang C X, Zhuang Y E, Xu T C, Lin Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol, 2013,39:204-212.
doi: 10.1007/s10886-013-0249-4 pmid: 23385369 |
[38] |
Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Wang J, Li W T, He M, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Liu J L, Qian Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA, 2018,115:3174-3179.
pmid: 29432165 |
[39] |
Van Dam N M, Bouwmeester H J. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci, 2016,21:256-265.
pmid: 26832948 |
[40] | Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 2003,256:67-83. |
[41] | Lin R Y, Wang H B, Guo X K, Ye C Y, He H B, Zhou Y, Lin W X. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J, 2011,28:225-236. |
[42] |
MacDonald M J, D’Cunha G B. Amodern view of phenylalanine ammonia lyase. Biochem Cell Biol, 2007,85:273-282.
doi: 10.1139/o07-018 pmid: 17612622 |
[43] |
Junge W, Lill H, Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci, 1997,22:420-423.
pmid: 9397682 |
[44] |
Henkes S, Sonnewald U, Badur R, Flachmann R, Stittet M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell, 2001,13:535-551.
doi: 10.1105/tpc.13.3.535 pmid: 11251095 |
[45] |
Sasaki H, Hirose T, Watanabe Y, Ohsugi R. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol, 1998,118:929-934.
doi: 10.1104/pp.118.3.929 pmid: 9808737 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|