作物学报 ›› 2021, Vol. 47 ›› Issue (2): 245-261.doi: 10.3724/SP.J.1006.2021.04099
蒋伟1,2(), 潘哲超1,2, 包丽仙1,2, 周福仙2, 李燕山1,2, 隋启君1,2,*(), 李先平1,2,*()
JIANG Wei1,2(), PAN Zhe-Chao1,2, BAO Li-Xian1,2, ZHOU Fu-Xian2, LI Yan-Shan1,2, SUI Qi-Jun1,2,*(), LI Xian-Ping1,2,*()
摘要:
广谱抗性基因的挖掘是马铃薯高抗晚疫病品种选育的基础。本研究以288份国际马铃薯中心筛选的晚疫病抗性群体为试验材料, 经过连续2年田间调查, 计算AUDPC和sAUDPC值, 评估群体晚疫病抗性; 利用SLAF-seq方法进行群体简化基因组测序, 通过对晚疫病抗性表型数据的全基因组关联分析, 挖掘晚疫病抗性相关的遗传位点和候选基因, 为晚疫病抗性品种选育和抗病机理研究提供一定的理论和材料基础。结果表明, 晚疫病抗性在288份材料间存在着广泛的遗传差异; 基于5种分析模型, 共鉴定到82个与晚疫病抗性显著关联的位点; 在关联区间关联到54个已知或可能与晚疫病抗性相关的基因。其中, 23个基因为抗性基因, 包括晚疫病抗性基因R1同源基因、Sw-5同源基因(R8)和Rpi-vnt1以及编码多效性耐药蛋白基因; 5个基因编码MAPK蛋白和WRKY转录因子; 1个基因参与茉莉酸途径; 3个基因与水杨酸途径相关; 6个基因是病程相关的基因; 3个基因参与苯基丙酸类合成途径; 其他与晚疫病抗性相关的基因, 如HMGR基因(2个)、细胞色素P450 (21个)。
[1] | 吴秋云, 黄科, 刘明月, 周倩, 熊兴耀. 马铃薯晚疫病抗病基因研究进展. 中国马铃薯, 2014,28:175-179. |
Wu Q Y, Huang K, Liu M Y, Zhou Q, Xiong X Y. Research progress of late blight resistance genes in potato. China Potato J, 2014,28:175-179 (in Chines with English abstract). | |
[2] | 李亚红, 赵俊, 金吉斌, 石安宪, 马永翠, 桂富荣. 云南省马铃薯晚疫病发生原因分析及治理对策. 中国植保导刊, 2014,34(9):22-24. |
Li Y H, Zhao J, Jin J B, Shi A X, Ma Y C, Gui F R. Cause analysis and control countermeasure of potato late blight in Yunnan province. China Plant Prot, 2014,34(9):22-24 (in Chinese). | |
[3] |
Martin M D, Cappellini E, Samaniego J A, Zepeda M L, Campos P F, Seguin-Orlando A, Wales N, Orlando L, Ho S Y W, Dietrich F S, Mieczkowski P A, Heitman J, Willerslev E, Krogh A, Ristaino J B, Gilbert M T P. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat Commun, 2013,4:2172-2178.
doi: 10.1038/ncomms3172 pmid: 23863894 |
[4] |
van der Vossen E A G, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S. The Rpi-blb2 gene from Solanum bulbocastanum is a Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J, 2005,44:208-222.
doi: 10.1111/j.1365-313X.2005.02527.x pmid: 16212601 |
[5] |
Song J, Bradeen J M, Naess S K, Raasch J A, Wielgus S M, Haberlach G T, Liu J, Kuang H, Austin-Phillips S, Buell C R, Helgeson J P, Jiang J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA, 2003,100:9128-9133.
doi: 10.1073/pnas.1533501100 pmid: 12872003 |
[6] |
van der Vossen E, Sikkema A, Hekkert B T L, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J, 2003,36:867-882.
pmid: 14675451 |
[7] |
Foster S J, Park T H, Pel M, Brigneti G, Śliwka J. Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Mol Plant-Microbe Interact, 2009,22:589-600.
pmid: 19348576 |
[8] |
Jiang R, Li J, Tian Z D, Du J, Armstrong M, Baker K, Tze-Yin L J, Zhou J, Bonierbale M, Hein I, Lindqvist-Kreuze H, Xie C H. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. J Exp Bot, 2018,69:1545-1555.
doi: 10.1093/jxb/ery021 pmid: 29385612 |
[9] |
Vossen J H, van Arkel G, Bergervoet M, Jo K R, Jacobsen E, Visser R G F. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theor Appl Genet, 2016,129:1785-1796.
pmid: 27314264 |
[10] |
Lindqvist-Kreuze H, de Boeck B, Unger P, Gemenet D, Li X P, Pan Z C, Sui Q J, Qin J H, Woldegjorgis G, Negash K, Seid I, Hirut B, Gastelo M, de Vega J, Bonierbale M. Global multi-environment resistance QTL for foliar late blight resistance in tetraploid potato with tropical adaptation. BioRxiv, 2020. https://doi.org/10.1101/2020.02.16.950618.
doi: 10.1101/2020.12.05.409821 pmid: 33299997 |
[11] |
Leisner C P, Hamilton J P, Crisovan E, Manrique-Carpintero N C, Marand A P, Newton L, Pham G M, Jiang J, Douches D S, Jansky S H, Buell C R. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J, 2018,94:562-570.
pmid: 29405524 |
[12] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013,8:e58700.
doi: 10.1371/journal.pone.0058700 pmid: 23527008 |
[13] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 19451168 |
[14] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010,20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[15] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
pmid: 19505943 |
[16] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
pmid: 17586829 |
[17] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009,19:1655-1664.
pmid: 19648217 |
[18] |
Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
doi: 10.1046/j.1471-8286.2002.00305.x |
[19] | Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer Press, 2009. p 224. |
[20] |
Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010,42:355-360.
doi: 10.1038/ng.546 pmid: 20208535 |
[21] |
Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008,178:1709-1723.
pmid: 18385116 |
[22] |
Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010,42:348-354.
pmid: 20208533 |
[23] |
Lippert C, Listgarten J, Liu Y, Kadie C M, Davidson R I, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods, 2011,8:833-835.
doi: 10.1038/nmeth.1681 pmid: 21892150 |
[24] |
Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014,80:283-383.
doi: 10.1007/s12229-014-9146-y |
[25] |
Ghislain M, Trognitz B, Del R. Herrera M, Solis J, Casallo G, Vásquez C, Hurtado O, Castillo R, Portal L, Orrillo M. Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and S. tuberosum grown under short-day conditions. Theor Appl Genet, 2001,103:433-442.
doi: 10.1007/s00122-001-0545-1 |
[26] |
Simko I, Costanzo S, Ramanjulu V, Christ B J, Haynes K G. Mapping polygenes for tuber resistance to late blight in a diploid Solanum phureja × S. stenotomum hybrid population. Plant Breed, 2006,125:385-389.
doi: 10.1111/pbr.2006.125.issue-4 |
[27] |
Colon L T, Turkensteen L J, Prummel W, Budding D J, Hoogendoorn J. Durable resistance to late blight (Phytophthora infestans) in old potato cultivars. Eur J Plant Pathol, 1995,101:387-397.
doi: 10.1007/BF01874852 |
[28] |
Naess S K, Bradeen J M, Wielgus S M, Haberlach G T, Mcgrath J M, Helgeson J P. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet, 2000,101:697-704.
doi: 10.1007/s001220051533 |
[29] | Landeo J A, Gastelo M, Beltran G, Diaz L. Quantifying genetic variance for horizontal resistance to late blight in potato breeding population B3C1. In: The International Potato Center Program Report 1999-2000, Scientist and Farmer-Partners in Research for the 21st Century. Lima, Peru, 2001. pp 63-68. |
[30] |
Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes G A, de Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 2014,104:624-633.
doi: 10.1094/PHYTO-10-13-0270-R pmid: 24423400 |
[31] |
Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection. Nature, 2001,411:826-833.
pmid: 11459065 |
[32] | Marla S S, Jones J D G. Structural analysis of resistance (R) genes in potato (Solanum Species) genome. In: Kumar Chakrabarti S, Xie C, Kumar Tiwari J, eds. The Potato Genome Cham: Springer International Publishers, 2017. pp 269-281. |
[33] |
Ballvora A, Ercolano M R, Weiß J, Meksem K, Bormann C A, Oberhagemann P, Salamini F, Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J, 2002,30:361-371.
doi: 10.1046/j.1365-313x.2001.01292.x pmid: 12000683 |
[34] |
Jo K-R, Visser R G F, Jacobsen E, Vossen J H. Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2(2) homologs on chromosome IX. Theor Appl Genet, 2015,128:931-941.
doi: 10.1007/s00122-015-2480-6 pmid: 25725999 |
[35] |
Smilde W D, Brigneti G, Jagger L, Perkins S, Jones J D G. Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet, 2005,110:252-258.
doi: 10.1007/s00122-004-1820-8 pmid: 15672258 |
[36] |
Jo K R, Arens M, Kim T Y, Jongsma M A, Visser R G F, Jacobsen E, Vossen J H. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theor Appl Genet, 2011,123:1331-1340.
pmid: 21877150 |
[37] |
Brommonschenkel S H, Frary A, Frary A, Tanksley S D. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact, 2000,13:1130-1138.
doi: 10.1094/MPMI.2000.13.10.1130 pmid: 11043474 |
[38] |
Lanfermeijer F C, Dijkhuis J, Sturre M J G, de Haan P, Hille J. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum . Plant Mol Biol, 2003,52:1039-1051.
doi: 10.1023/A:1025434519282 |
[39] |
Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B H, Molina A, Schulze-Lefert P, Lipka V, Somerville S. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 2006,18:731-746.
doi: 10.1105/tpc.105.038372 pmid: 16473969 |
[40] |
Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, Mcfadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009,323:1360-1363.
pmid: 19229000 |
[41] |
Ruocco M, Ambrosino P, Lanzuise S, Woo S L, Lorito M, Scala F. Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection. J Plant Physiol, 2011,168:2225-2233.
doi: 10.1016/j.jplph.2011.07.008 pmid: 21908070 |
[42] |
Gebhardt C, Valkonen J P T. Organazation of gene controlling disease resistance in the potato genome. Annu Rev Phytopathol, 2001,39:79-102.
doi: 10.1146/annurev.phyto.39.1.79 pmid: 11701860 |
[43] |
Trognitz F, Manosalva P, Gysin R, Niño-Liu D, Simon R, del Rosario Herrera M, Trognitz B, Ghislain M, Nelson R. Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mol Plant-Microbe Interact, 2002,15:587-597.
doi: 10.1094/MPMI.2002.15.6.587 pmid: 12059107 |
[44] |
Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones J D G, Doke N, Yoshioka H. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol, 2006,140:681-692.
doi: 10.1104/pp.105.074906 pmid: 16407438 |
[45] |
Yogendra K N, Dhokane D, Kushalappa A C, Sarmiento F, Rodriguez E, Mosquera T. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Sci, 2017,256:208-216.
pmid: 28167034 |
[46] |
Yogendra K N, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa K A, Duggavathi R, Kushalappa A C. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J Exp Bot, 2015,66:7377-7389.
doi: 10.1093/jxb/erv434 pmid: 26417019 |
[47] |
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. Plant Sci, 2013,207:79-87.
pmid: 23602102 |
[48] |
Saubeau G, Perrin F, Marnet N, Andrivon D, Val F. Hormone signalling pathways are differentially involved in quantitative resistance of potato to Phytophthora infestans. Plant Pathol, 2016,65:342-352.
doi: 10.1111/ppa.2016.65.issue-2 |
[49] |
Halim V A, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant-Microbe Interact, 2007,20:1346-1352.
doi: 10.1094/MPMI-20-11-1346 pmid: 17977146 |
[50] |
Mosquera T, Alvarez M F, Jiménez-Gómez J M, Muktar M S, Paulo M J, Steinemann S, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert H R, Walkemeier B, Gebhardt C. Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNPs for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS One, 2016,11:e0156254.
doi: 10.1371/journal.pone.0156254 pmid: 27281327 |
[51] |
Danan S, Chauvin J E, Caromel B, Moal J D, Pelle R, Lefebvre V. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theor Appl Genet, 2009,119:705-719.
doi: 10.1007/s00122-009-1081-7 pmid: 19533081 |
[52] |
Jeon J H, Kim H S, Choi K H, Joung Y H, Joung H, Byun S M. Cloning and characterization of one member of the chalcone synthase gene family from Solanum tuberosum L. Biosci Biotechnol Biochem, 1996,60:1907-1910.
pmid: 8987872 |
[53] |
de Jong W S, Eannetta N T, de Jong D M, Bodis M. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet, 2004,108:423-432.
pmid: 14523517 |
[54] |
Zhang Y F, Jung C S, de Jong W S. Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet, 2009,119:143-150.
doi: 10.1007/s00122-009-1024-3 pmid: 19363602 |
[55] |
Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995,7:1085-1097.
pmid: 12242399 |
[56] |
Dixon R A, Achnine L, Kota p, Liu C J, Reddy M S S, Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol, 2002,3:371-390.
doi: 10.1046/j.1364-3703.2002.00131.x pmid: 20569344 |
[57] |
Kuc J. Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol, 1995,33:275-297.
pmid: 18999962 |
[58] |
Du J, Tian Z D, Liu J, Vleeshouwers V, Shi X, Xie C H. Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep, 2013,40:957-967.
pmid: 23224656 |
[59] |
Álvarez M F, Angarita M, Delgado M C, García C, Jiménez-Gomez J, Gebhardt C, Mosquera T. Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum Group Phureja. Front Plant Sci, 2017,8:1-11.
doi: 10.3389/fpls.2017.00001 pmid: 28220127 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[3] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[4] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[7] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[8] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[9] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[10] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[11] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[12] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[13] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[14] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[15] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
|