欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2715-2723.doi: 10.3724/SP.J.1006.2022.12040

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

广西野生稻Y11抗白背飞虱QTL定位

杨明1(), 李丹婷2, 范德佳1, 谭嵩娟1, 程遐年1, 刘裕强1,*(), 万建民1,3   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
    2广西壮族自治区农业科学院水稻研究所, 广西南宁 530007
    3中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2021-06-06 接受日期:2022-05-05 出版日期:2022-11-12 网络出版日期:2022-05-24
  • 通讯作者: 刘裕强
  • 作者简介:第一作者联系方式: E-mail: 2018101087@njau.edu.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100400-01);国家自然科学基金项目(32088102);国家自然科学基金项目(32072030);江苏省重点研发计划项目(BE2019380)

Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11

YANG Ming1(), LI Dan-Ting2, FAN De-Jia1, TAN Song-Juan1, CHENG Xia-Nian1, LIU Yu-Qiang1,*(), WAN Jian-Min1,3   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Jiangsu, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-06-06 Accepted:2022-05-05 Published:2022-11-12 Published online:2022-05-24
  • Contact: LIU Yu-Qiang
  • Supported by:
    The National Key Research and Development Program of China(2017YFD0100400-01);The National Natural Science Foundation of China(32088102);The National Natural Science Foundation of China(32072030);The Jiangsu Provincial Key Research Program(BE2019380)

摘要:

白背飞虱是危害水稻生产最严重的害虫之一。培育抗性品种是防治白背飞虱最经济有效的措施。本研究发现广西野生稻‘Y11’高抗白背飞虱, ‘Y11’植株上白背飞虱的数量及存活率均显著低于感虫品种‘广恢998’, 表现出较强的排趋性和抗生性。为解析‘Y11’抗白背飞虱的遗传基础, 以‘Y11’为供体亲本, 籼稻品种‘广恢998’为轮回亲本, 构建了BC3F9回交重组自交系群体, 并完成了该群体白背飞虱苗期抗性鉴定及全基因组连锁图谱的构建, 进行了抗白背飞虱QTL (quantitative trait locus)检测。结果发现, 在水稻2号、6号和11号染色体上检测到3个抗性位点, 分别命名为qWBPH2Y11, qWBPH6Y11qWBPH1Y11, 其LOD值分别为4.8、2.5和3.7, 分别解释表型变异的9.3%、2.3%和5.6%, 且3个QTL的抗性等位基因均来自于广西野生稻‘Y11’。进一步从BC3F9回交群体中挑选携带qWBPH2位点的家系继续与‘广恢998’回交2次, 经标记辅助选择, 获得了qWBPH2的近等基因系, 近等基因系的白背飞虱抗性显著高于背景亲本‘广恢998’。上述抗白背飞虱QTL的定位及近等基因系的构建, 为抗性基因克隆及通过分子标记辅助选择培育抗性品种奠定了基础。

关键词: 水稻, 白背飞虱, 数量性状基因座, 基因定位

Abstract:

White-backed planthopper (WBPH) is one of the most serious pests in rice production. Breeding resistant varieties is the most economical and effective strategy to control the white-backed planthopper. In this study, we found that Guangxi wild rice variety ‘Y11’ had high resistance to white-backed planthopper. The number and survival rate of WBPH were significantly less than the susceptible variety ‘Guanghui 998’. These results showed that ‘Y11’ displayed higher antixenosis and antibiosis against WBPH. Subsequently, ‘Y11’ was as the donor parent and an indica cultivar ‘Guanghui 998’ was as the recurrent parent by continuous backcrossing and selfing to obtain the BC3F9 population. Furthermore, to identify the quantitative trait locus (QTL) for white-backed planthopper resistance, we completed the evaluation of this population for WBPH resistance at seedling stage and constructed the genome-wide linkage map. Three QTLs were detected on the three different rice chromosomes, and designed as qWBPH2Y11, qWBPH6Y11, and qWBPH11Y11, respectively. The LOD values were 4.8, 2.5, and 3.7, which accounted for 9.3%, 2.3%, and 5.6% of the phenotypic variation, respectively. All of the resistance alleles were from resistant parent ‘Y11’. Plant harboring qWBPH2 Y11 was selected from BC3F9 population to continuously backcross with ‘Guanghui 998’. The near isogenic line of qWBPH2 Y11 was developed by molecular marker assisted selection, which displayed higher resistance to WBPH than the background parent ‘Guanghui 998’. The mapping of WBPH resistance QTLs and the development of the near isogenic line in this study will be helpful for cloning resistance genes and breeding resistant in rice cultivars.

Key words: rice (Oryza sativa L.), white-backed planthopper (WBPH), QTLs, gene mapping

表1

水稻白背飞虱抗性评价标准"

等级
Resistance score
死苗率
Mortality rate (%)
受害症状
Damage symptoms
0 <1.0 无损伤
No damage
1 1.1-10.0 非常微弱损伤
Very weak damage
3 10.1-30.0 第一、二叶叶尖发黄, 轻微的发育迟缓
The first and second leaves were yellow tips and slight developmental delay
5 30.1-50.0 明显的黄化矮化或大约一半的植物枯萎或死亡
Significant yellowing dwarfing or about half of the plants withered or died
7 50.1-70.0 超过半数植株死亡, 其他植株明显矮化萎蔫
More than half of the plants died, and the other plants were obviously dwarfed and wilted
9 >70.0 所有植株死亡
All the plants died

图1

‘Y11’和‘广恢998’白背飞虱抗性比较分析 A: 接种白背飞虱约10 d后‘Y11’和‘广恢998’植株; B: 接种白背飞虱10 d后‘Y11’和‘广恢998’的死苗率统计分析; C: 接种虫1、2和4 d后 ‘Y11’和‘广恢998’植株上白背飞虱的存活率; D: ‘Y11’和‘广恢998’各接种20头白背飞虱后0、1、2、3和4 d虫子数量; E: ‘Y11’和‘广恢998’置于虫源4周不同时间点白背飞虱数量统计分析。*: P < 0.05; **: P < 0.01; 标尺为3 cm。"

图2

‘Y11’/‘广恢998’ BC3F9群体白背飞虱抗性等级次数分布"

图3

‘Y11’/‘广恢998’BC3F9分子遗传图谱"

图4

抗白背飞虱QTL位点在染色体上的分布 黑色椭圆表示QTL在染色体上的位置。"

表2

‘Y11’/‘广恢998’ BC3F9群体检测到的抗白背飞虱QTL位点"

QTL 染色体
Chr.
标记区间
Marker interval
LOD值
LOD score
贡献率
Variance explained (%)
加性效应
Additive effect
qWBPH2Y11 2 id2013634 to id2015636 4.8 9.3 -0.20
qWBPH6Y11 6 id6006868 to id6007754 2.5 2.3 -0.07
qWBPH11Y11 11 id11005456 to K_id11007840 3.7 5.6 -0.17

图5

qWBPH2Y11近等基因系W0394白背飞虱抗性分析 A: 接种白背飞虱约10 d后‘W0394’和‘广恢998’的植株照片; B: 接种白背飞虱10 d‘W0394’和‘广恢998’的死苗率统计分析。标尺为3 cm; **: P < 0.01。"

[1] Li Y, Cao Y, Zhou Q, Guo H, Ou G. The efficiency of southern rice black-streaked dwarf virus transmission by the vector Sogatella furcifera to different host plant species. J Integr Agric, 2012, 11: 621-627.
doi: 10.1016/S2095-3119(12)60049-5
[2] Wu Y, Zhang G, Chen X, Li X, Xiong K, Cao S, Hu Y, Lu M, Liu W, Tuan H, Qi G, Zhao B. The influence of Sogatella furcifera (Hemiptera: Delphacidae) migratory events on the southern rice black-streaked dwarf virus epidemics. J Econom Entomol, 2017, 110: 854-864.
doi: 10.1093/jee/tox062
[3] Sidhu G, Khush G, Medrano F. A dominant gene in rice for resistance to white-backed planthopper and its relationship to other plant characteristics. Euphytica, 1979, 28: 227-232.
doi: 10.1007/BF00056579
[4] Angeles E, Khush G, Heinrichs E. New genes for resistance to white-backed planthopper in rice. Crop Sci, 1981, 21: 47-50.
doi: 10.2135/cropsci1981.0011183X002100010014x
[5] Hernandez J, Khush G. Genetics of resistance to white-backed planthopper in some rice (Oryza sativa L.) varieties. Oryza, 1981, 18: 44-50.
[6] Wu C, Khush G. A new dominant gene for resistance to white-backed planthopper in rice. Crop Sci, 1985, 25: 505-509.
doi: 10.2135/cropsci1985.0011183X002500030017x
[7] Li X M, Zhai H Q, Wan J M, Ma L Y, Zhuang J Y, Liu G J, Yang C D. Mapping of a new gene Wbph6(t) resistant to the white backed planthopper, Sogatella furcifera, in rice. Rice Sci, 2004, 11: 86-90.
[8] Sidhu N, Bansal U, Shukla K, Saini R. Genetics of resistance to white-backed planthopper in five rice stocks. SABRAO J Breed Genet, 2005, 37: 1-11.
[9] Yamasaki M, Yoshimura A, Yasui H. Genetic basis of ovicidal response to white-backed planthopper (Sogatella furcifera Horváth) in rice (Oryza sativa L.). Mol Breed, 2003, 12: 133-143.
doi: 10.1023/A:1026018821472
[10] Tan G, Weng Q, Ren X, Huang Z, Zhu L, He G. Two white-backed planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity, 2004, 92: 212-217.
pmid: 14666132
[11] 沈子杰, 范德佳, 何俊, 黄捷, 江玲, 程遐年, 刘裕强, 万建民. 籼稻品种‘IR13427-45-2-1-2-2-2’抗白背飞虱QTL定位. 南京农业大学学报, 2017, 40: 957-962.
Shen Z J, Fan D J, He J, Huang J, Jiang L, Cheng X N, Liu Y Q, Wan J M. QTL mapping of indica rice variety ‘IR13427-45-2-1-2-2-2’ against white-backed planthopper. J Nanjing Agric Univ, 2017, 40: 957-962. (in Chinese with English abstract)
[12] McCouch S R, Khush G S, Tanksley S D. Tagging genes for disease and insect resistance via linkage to RFLP markers. In: BantaS J, ArgosinoG S,eds. Rice Genetics II. Manila: International Rice Research Institute, 2008. pp 443-449.
[13] Ramesh K, Padmavathi G, Deen R, Pandey M, Lakshmi J, Bentur J. White-backed planthopper Sogatella furcifera (Horváth) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica, 2014, 200: 139-148.
doi: 10.1007/s10681-014-1175-4
[14] Yang Y, Xu J, Leng Y, Xiong G, Hu J, Zhang G, Huang L, Wang L, Guo L, Li J, Chen F, Qian Q, Zeng D. Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to white-backed planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 145.
doi: 10.1186/1471-2229-14-145
[15] Fan D J, Liu Y Q, Zhang H L, He J, Huang F K, Huang S S, Wu B Q, Liu D M, Wen P Z, Liu L L, Jiang L, Cheng X N, Wan J M. Identification and fine mapping of qWBPH11 conferring resistance to white-backed planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.). Mol Breed, 2018, 38: 96-104.
doi: 10.1007/s11032-018-0846-6
[16] IRRI. Standard Evaluation Systems for Rice (SES). Manila: International Rice Research Institute, 2002. pp 12-21.
[17] Xu X, Kawasaki S, Fujimura T, Wang C. A protocol for high-throughput extraction of DNA from rice leaves. Plant Mol Biol Rep, 2005, 23: 291-295.
doi: 10.1007/BF02772759
[18] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811
[19] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[20] McCouch S. Gene nomenclature system for rice. Rice, 2008, 1: 72-84.
doi: 10.1007/s12284-008-9004-9
[21] Gomi K, Satoh M, Ozawa R, Shinonaga Y, Sanada S, Sasaki K, Matsumura M, Ohashi Y, Kanno H, Akimitsu K, Takabayashi J. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice (Oryza sativa L.). Plant J, 2010, 61: 46-57.
doi: 10.1111/j.1365-313X.2009.04031.x
[22] Ma M, Wu Y, Peng Z, Zhao X, Zhang Y, Liao G, Zhai B. Migration analysis of Sogatella furcifera (Hemiptera: Delphacidae) in the northeastern Hunan province in June. Environ Entomol, 2017, 46: 757-765.
doi: 10.1093/ee/nvx092
[23] Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Lou X. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot, 2015, 66: 6035-6045.
doi: 10.1093/jxb/erv318
[24] Ren J, Gao F, Wu X, Lu X, Zeng L, Lyu J, Su X, Luo H, Ren G. Bph32, a novel gene encoding an unknown SCR domain- containing protein, confers resistance against the brown planthopper in rice. Sci Rep, 2016, 6: 37645.
doi: 10.1038/srep37645
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[10] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[11] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[12] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[2] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[3] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[4] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[5] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[6] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .
[7] 王嘉宇;范淑秀;徐正进;陈温福. 几个不同穗型水稻品种籽粒灌浆特性的研究[J]. 作物学报, 2007, 33(08): 1366 -1371 .
[8] 陈光尧;王国槐;罗峰;聂明建. 甘蓝型油菜成熟角果内源激素对带壳种子发芽的影响[J]. 作物学报, 2007, 33(08): 1324 -1328 .
[9] 汪静儿;孙玉强;张方镳;沈晓佳;祝水金. 棉属G染色体组野生棉种的体细胞胚胎发生与植株再生研究[J]. 作物学报, 2007, 33(08): 1279 -1285 .
[10] 徐雁鸿;关建平;宗绪晓. 豇豆种质资源SSR标记遗传多样性分析[J]. 作物学报, 2007, 33(07): 1206 -1209 .