欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 851-859.doi: 10.3724/SP.J.1006.2022.13013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达ZmCIPKHT基因增强植物耐热性

许静1(), 高景阳1, 李程成2, 宋云霞1, 董朝沛1, 王昭1, 李云梦1, 栾一凡1, 陈甲法2, 周子键2,*(), 吴建宇1,2,*()   

  1. 1河南农业大学农学院, 河南郑州 450002
    2河南农业大学生命科学学院, 河南郑州 450002
  • 收稿日期:2021-02-03 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-10
  • 通讯作者: 周子键,吴建宇
  • 作者简介:E-mail: 709823684@qq.com
  • 基金资助:
    河南省自然科学基金重点项目资助(162300410130)

Overexpression of ZmCIPKHT enhances heat tolerance in plant

XU Jing1(), GAO Jing-Yang1, LI Cheng-Cheng2, SONG Yun-Xia1, DONG Chao-Pei1, WANG Zhao1, LI Yun-Meng1, LUAN Yi-Fan1, CHEN Jia-Fa2, ZHOU Zi-Jian2,*(), WU Jian-Yu1,2,*()   

  1. 1College of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2021-02-03 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-10
  • Contact: ZHOU Zi-Jian,WU Jian-Yu
  • Supported by:
    Key Project of Henan Natural Science Foundation(162300410130)

摘要:

高温胁迫对植物正常生长发育及产量的影响越来越显著。为了适应外界环境的变化, 植物进化出了一系列应对高温胁迫的分子遗传机制。类钙调磷酸酶B蛋白(CBL)互作蛋白激酶(CIPK), 在ABA信号转导途径上积极参与植物对高温胁迫的响应。在前期全基因组关联分析的基础上, 本实验克隆了一个与玉米耐高温性状相关的候选基因ZmCIPKHT, qRT-PCR结果表明ZmCIPKHT基因受高温胁迫的显著诱导。室内表型鉴定的实验发现过表达ZmCIPKHT的转基因拟南芥植株在高温胁迫下, 比野生型的存活率显著提高, 生长状态更好。玉米原生质体瞬时转化实验证明ZmCIPKHT蛋白定位于细胞核中。酵母双杂交实验验证了ZmCIPKHT蛋白与玉米CBLs家族中的ZmCBL4蛋白存在互作关系。同时, ZmCIPKHT转基因拟南芥在高温胁迫条件下, 脱落酸(ABA)通路相关基因的表达水平有其相应的变化, 揭示了ZmCIPKHT可能依赖于ABA信号转导通路来增强植物的耐热性。这些结果为解析玉米CBL-CIPK信号通路依赖于ABA途径对植物非生物胁迫响应的分子机制提供了新的实验根据。

关键词: 玉米, 耐热性, 蛋白激酶, CBL-CIPK, ABA信号通路

Abstract:

The effects of high temperature stress on the normal growth and yield of plants is more and more serious. To adapt the changes of external environment, plants have evolved a series of molecular genetic mechanisms to respond to high temperature stress. The calcineurin B-like protein (CBL) interacting protein kinase (CIPK) is actively involved in response to high temperature stress depended on ABA signal transduction pathway in plants. Based on previous genome-wide association analysis, a candidate gene ZmCIPKHT related to maize high temperature tolerance was cloned in this study. Real-time quantitative PCR results showed that ZmCIPKHT gene was significantly induced by high temperature stress. Transient transformation of maize protoplasts revealed that ZmCIPKHT was localized in the nucleus. Overexpressing ZmCIPKHT plants of transgenic Arabidopsis thaliana had significantly higher survival rate and better growth status than wild type under high temperature stress. The yeast two-hybrid experiment confirmed that the interaction between ZmCIPKHT protein and ZmCBL4 protein in maize CBLs family. The relative expression levels of genes related to abscisic acid (ABA) pathway in transgenic Arabidopsis thaliana with ZmCIPKHT under high temperature stress were changed accordingly, indicating that the regulations of ZmCIPKHT genes under high temperature stress were in the ABA-dependent pathway. These results provide a new experimental basis for elucidating the molecular mechanism of maize CBL-CIPK signaling pathway dependent on ABA pathway to abiotic stress in plants.

Key words: maize, heat tolerance, protein kinase, CBL-CIPK, ABA signal pathway

表1

本实验中所用到的引物"

引物
Primer ID
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
qZmCIPKHT-F/R CCATAACCAGATCACGTCAAAA GGTAACCTGAAACACAATTCCG
EF1α-F/R TGGGCCTACTGGTCTTACTACTGA ACATACCCACGCTTCAGATCCT
ZmCIPKHT-F/R CGGGGGACTCTTGACCATGGTAATGGACGAGAGGAGGACTA TACTAGTCAGATCTACCATGGTCTGCTGCGTCGGCAAA
PGBKT7-ZmCIPKHT-F/R ATGGCCATGGAGGCCGAATTCATGGACGAGAGGAGGACTATTTTG CCGCTGCAGGTCGACGGATCCCTACTGCTGCGTCGGCAAA
qPYL2-F/R GTCAGAGAAGTGACCGTAATCT CGACGTCACTGATTTCTAGTTC
qFOA1-F/R GCTTACATCGTTGGAGAAG GCACAGAACTTGGAACATAA
qHAI2-F/R TACATCCGTCTTTTGTACGGAA CGTGAAGTCTCTCTTTACACCT
qSnRK2.3-F/R ATTTCAAGAATCTTCGTGGCTG CTGTGTTGCTCTCGTTCATTAG

图1

ZmCIPKHT的蛋白结构域分析和植物中CIPK蛋白的系统进化树"

图2

ZmCIPKHT基因的表达分析"

图3

ZmCIPKHT过表达拟南芥株系的分子检测 A: ZmCIPKHT过表达株的检测; B: ZmCIPKHT的转录检测; WT: 野生型; OE: 过表达株系。"

图4

高温胁迫处理后转基因拟南芥的耐热鉴定及存活率统计 A: 高温胁迫后转基因拟南芥的表型鉴定; B: 高温胁迫后转基因拟南芥存活率统计; WT: 野生型拟南芥; OE: 过表达拟南芥, 数据为3次生物学重复±标准差。"

图5

正常条件和高温胁迫条件下野生型WT和过表达转基因拟南芥OE-4、OE-6株系ABA通路相关基因的表达分析 将野生型材料WT和过表达拟南芥株系OE-4、OE-6进行37℃ 1周的高温胁迫处理, 检测ABA通路相关基因表达量, 数据为3次生物学重复±标准差。"

图6

玉米ZmCIPKHT蛋白在原生质体中的亚细胞定位 GFP: GFP标记的ZmCIPKHT在玉米原生质体的亚细胞定位; Bright: 同一视野光镜下的原生质体; Merged: 光镜及荧光照片的叠加; 35S:GFP: 转入空载体的原生质体; 35S:ZmCIPKHT:GFP: 转入目的载体的原生质体。标尺为10 μm。"

图7

酵母双杂交实验检测ZmCIPKHT与ZmCBLs的互作"

图8

ZmCIPKHT介导的Ca2+途径依赖ABA信号通路调控玉米耐热性的模式图"

[1] Burke J J, Chen J. Enhancement of reproductive heat tolerance in plants. PLoS One, 2015, 10:e0122933.
[2] 任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5):109-115.
Ren H, Liu P, Dong S T, Zhang J W, Zhao B. Research progress on physiological mechanism of high temperature stress on growth and development of maize. J Maize Sci, 2019, 27(5):109-115 (in Chinese with English abstract).
[3] Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci, 2012, 37:118-125.
doi: 10.1016/j.tibs.2011.11.007 pmid: 22236506
[4] Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y G, Maathuis F J, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell, 2009, 21:2829-2843.
doi: 10.1105/tpc.108.065318
[5] Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J, 2011, 66:844-851.
doi: 10.1111/j.1365-313X.2011.04550.x
[6] Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol, 2010, 151:7-33.
doi: 10.1046/j.1469-8137.2001.00173.x
[7] Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL- interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem, 2012, 287:7956-7968.
doi: 10.1074/jbc.M111.279331 pmid: 22253446
[8] D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca- regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48:857-872.
doi: 10.1111/tpj.2006.48.issue-6
[9] Li L, Kim B G, Cheong Y H, Pandey G K, Luan S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:12625-12630.
[10] DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2009, 425:27-40.
doi: 10.1042/BJ20091147 pmid: 20001960
[11] Ma X, Li Q H, Yu Y N, Qiao Y M, Haq S U, Gong Z H. The CBL-CIPK pathway in plant response to stress signals. Int J Mol Sci, 2020, 21:5668.
doi: 10.3390/ijms21165668
[12] Yang Y, Wu Y, Ma L, Yang Z, Dong Q, Li Q, Ni X, Kudla J, Song C, Guo Y. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. Plant Cell, 2019, 31:1367-1384.
doi: 10.1105/tpc.18.00568
[13] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134:43-58.
pmid: 14730064
[14] Piao H L, Xuan Y H, Park S H, Je B I, Park S J, Park S H, Kim C M, Huang J, Wang G K, Kim M J, Kang S M, Lee I J, Kwon T R, Kim Y H, Yeo U S, Yi G, Son D, Han C D. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells, 2010, 30:19-27.
doi: 10.1007/s10059-010-0084-1
[15] Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf ranspiration and root potassium uptake in Arabidopsis. Plant J, 2007, 52:223-239.
pmid: 17922773
[16] Pandey G K, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav A K, Tokas I, Sanyal S K, Kim B G, Lee S C, Cheong Y H, Kudla J, Luan S. Calcineurin B-Like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol, 2015, 169:780-792.
doi: 10.1104/pp.15.00623
[17] Shi H, Ishitani M, Kim C, Zhu J K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97:6896-6901.
doi: 10.1073/pnas.120170197
[18] Cui X Y, Du Y T, Fu J D, Yu T F, Wang C T, Chen M, Chen J, Ma Y Z, Xu Z S. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol, 2018, 18:93.
doi: 10.1186/s12870-018-1306-5
[19] Wang Y, Li T, John S J, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem, 2018, 123:103-113.
doi: 10.1016/j.plaphy.2017.11.019
[20] Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot, 2019, 70:4849-4864.
doi: 10.1093/jxb/erz171
[21] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2:1565-1572.
doi: 10.1038/nprot.2007.199
[22] Wang Q, Yu G, Chen Z, Han J, Wang K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L.). Crop J, 2020, 2214-5141.
[23] Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, Li J, Wang L, Malook S U, Wu J. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. Plant Methods, 2019, 15:144.
doi: 10.1186/s13007-019-0529-2
[24] Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci, 2016, 253:118-129.
doi: S0168-9452(16)30480-0 pmid: 27968980
[25] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134:43-58.
pmid: 14730064
[26] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144:1416-1428.
pmid: 17535819
[27] Tai F, Yuan Z, Li S, Wang Q, Liu F, Wang W. ZmCIPK8, a CBL- interacting protein kinase, regulates maize response to drought stress. Plant Cell Tissue Organ Cult, 2016, 124:459-469.
doi: 10.1007/s11240-015-0906-0
[28] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46:1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Function of ZmCIPK24-2 in response to salt stress in maize. Acta Agron Sin, 2020, 46:1351-1358 (in Chinese with English abstract).
[29] Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H. Identification and characterization of putative CIPK genes in maize. J Genet Genomics, 2011, 38:77-87.
doi: 10.1016/j.jcg.2011.01.005
[30] Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007, 143:251-262.
doi: 10.1104/pp.106.091322
[31] Wang D F, Pang X J, Yang F, Kou S, Zhang, Yu P X, Niu Y B, Antioxidative enzymes, calcium, and ABA signaling pathway are required for the stress tolerance of transgenic wheat plant by the ectopic expression of harpin protein fragment Hpa110-42 under heat stress. Russ J Plant Physiol, 2017, 64:899-905.
doi: 10.1134/S1021443717060140
[32] Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62:25-54.
doi: 10.1111/jipb.v62.1
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[9] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[10] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[11] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[14] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
[15] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!