欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1273-1278.doi: 10.3724/SP.J.1006.2022.14070

• 研究简报 • 上一篇    下一篇

rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合

王海波1,2(), 应静文1, 何礼1,3, 叶文宣1, 涂卫1, 蔡兴奎1, 宋波涛1,*(), 柳俊1   

  1. 1农业农村部马铃薯生物学与生物技术重点实验室 / 园艺植物生物学教育部重点实验室 / 湖北省马铃薯工程技术研究中心 / 华中农业大学, 湖北武汉 430070
    2湖北民族大学生物科学与技术学院, 湖北恩施 445000
    3四川省农业科学院园艺研究所, 四川成都610066
  • 收稿日期:2021-04-20 接受日期:2021-09-10 出版日期:2022-05-12 网络出版日期:2021-10-18
  • 通讯作者: 宋波涛
  • 作者简介:E-mail: wanghaibo0519@126.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(马铃薯, CARS09-P07)资助

Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats

WANG Hai-Bo1,2(), YING Jing-Wen1, HE Li1,3, YE Wen-Xuan1, TU Wei1, CAI Xing-Kui1, SONG Bo-Tao1,*(), LIU Jun1   

  1. 1Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Key Laboratory of Horticultural Plant Biology, Ministry of Education / Potato Engineering and Technology Research Center of Hubei Province / Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, Hubei, China
    3Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
  • Received:2021-04-20 Accepted:2021-09-10 Published:2022-05-12 Published online:2021-10-18
  • Contact: SONG Bo-Tao
  • Supported by:
    China Agriculture Research System (Potato, CARS-09-P07)

摘要:

植物体细胞杂交是植物种质资源创制的重要方法。体细胞杂种在原生质体再生的过程中染色体会产生非常多的遗传变异。研究体细胞杂种的染色体行为为马铃薯体细胞杂种的创制和利用提供理论基础。本研究采用rDNA和端粒重复序列作为探针进行原位杂交(fluorescence in situ hybridization), 并结合基因组原位杂交(genomic in situ hybridization), 对马铃薯和茄子体细胞杂种染色体组成和变异进行了分析。原位杂交结果表明, 体细胞杂种中存在马铃薯和茄子融合的染色体和双着丝粒染色体, 并发现部分融合染色体是由马铃薯和茄子2号染色体末端对末端融合得到的。重排的双着丝粒染色体的着丝粒一个来源于马铃薯, 一个来源于茄子。此外, 体细胞杂种中来源于茄子的5S rDNA在体细胞杂种再生及稳定的过程中全部丢失。研究结果表明马铃薯与茄子在进行体细胞杂交的过程中, 染色体是不稳定的, 容易造成融合后代出现双着丝粒和染色体重排等现象。体细胞杂种的染色体会通过染色体重排、双着丝粒、rDNA均一化等多种形式使其染色体趋于稳定。

关键词: 马铃薯, 茄子, 体细胞杂种, rDNA, 染色体重排

Abstract:

Somatic hybridization is an important way to create new germplasm. Somatic hybrids produced plenty of genetic variation during protoplast regeneration. In this study, to analyze the chromosome composition and variation of potato and eggplant somatic hybrids, rDNAs and telomeric repeats were used as probes for FISH (fluorescence in situ hybridization), combined with GISH (Genomic in situ hybridization). The results showed that rearranged chromosomes and dicentric chromosomes existed in somatic hybrids, and the parts of the rearranged chromosomes was derived from the end-to-end fusion of potato and eggplant chromosomes 2. One centromere of the rearranged dicentric chromosomes was derived from potato and the other was from eggplant. Eggplant 5S rDNA sites were lost in somatic hybrids to homogenize the rDNA of somatic hybrids. The results of this study indicated that the chromosomes were unstable during the somatic hybridization of potato and eggplant, which can easily cause dicentric and chromosomal rearrangements in somatic hybrids. The chromosomes of somatic hybrids tended to be stable through various ways such as chromosome rearrangement, dicentric and rDNA homogenization.

Key words: potato, eggplant, somatic hybrids, rDNA, chromosome rearrangement

图1

rDNAs在AC142和508.3上的定位 a: rDNAs在AC142上的定位; b: rDNAs在508.3上的定位, 其中a、b中红色荧光信号为5S rDNA信号, 绿色荧光信号为25S rDNA信号。标尺为10 μm。"

图2

rDNA探针结合GISH鉴定马铃薯和茄子体细胞杂种中染色体的组成 a: 体细胞杂种60-13染色体中含有rDNA位点染色体的识别(红色为5S位点, 绿色为25S位点); b: 来自a中的染色体经过洗涤后再开展GISH鉴定其亲本来源(红色为马铃薯染色体, 绿色为茄子染色体)。箭头指示25S位点, 箭指示5S位点。标尺为10 μm。"

图3

rDNA、端粒重复序列结合GISH鉴定体细胞杂种中重排染色体的来源 a: 体细胞杂种PE60-10染色体中含有rDNA的染色体的识别(红色为5S位点, 绿色为25S位点); b: 来自a中的染色体经过洗涤后再开展GISH鉴定其亲本来源(红色为马铃薯染色体, 绿色为茄子染色体); c: 端粒探针信号在体细胞杂种PE60-10染色体中的分布(红色为端粒探针信号); d: 来自c中的染色体经过洗涤后再开展GISH鉴定其亲本来源(红色为马铃薯染色体, 绿色为茄子染色体)。图a和b中箭头指示25S位点, 箭指示5S位点, 图c和d中椭圆和圆形框指示含有rDNA位点的重排染色体。图a、b、c和d方框中放大的染色体为椭圆框中指示的染色体。标尺为10 μm。"

图4

体细胞杂种PE60-10中末端融合的染色体产生的示意图 染色体上明显染色很浅的区域为核仁组织区(NOR)。图中的染色体来自作为体细胞融合的马铃薯和茄子亲本, 以及它们的体细胞杂种PE60-10。"

图5

体细胞杂种PE60-10中染色体重排形成的双着丝粒 a和b分别显示来自体细胞杂种PE60-10的2个染色体分裂相。箭指示具有双着丝粒的染色体。白色方框中显示该染色体的黑白图片以利于观察染色体上的缢痕。白色线条指示主缢痕, 黄色线条指示该染色体上另外一个明显的缢痕。标尺为10 μm。"

[1] Xiang F N, Xia G M, Chen H M. Effect of UV dosage on somatic hybridization between common wheat (Triticum aestivum L.) and Avena sativa L. Plant Sci, 2003, 164:697-707.
doi: 10.1016/S0168-9452(03)00021-9
[2] 王晶, 向凤宁, 夏光敏, 陈惠民. 利用不对称体细胞杂交向小麦转移高冰草染色体小片段. 中国科学, 2004, 34:113-120.
Wang J, Xiang F N, Xia G M, Chen H M. Using asymmetric somatic hybridization to transfer small chromosome fragments from tall wheatgrass to wheat. Sci China, 2004, 34:113-120 (in Chinese).
[3] Greplová M, Polzerová H, Vlastníková H. Electrofusion of protoplasts from Solanum tuberosum, S. bulbocastanum and S. pinnatisectum. Acta Physiol Plant, 2008, 30:787-796.
doi: 10.1007/s11738-008-0183-1
[4] Tarwacka J, Polkowska-Kowalczyk L, Kolano B, Kolano B, Śliwka J, Wielgat B. Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. J Plant Physiol, 2013, 170:1541-1548.
doi: 10.1016/j.jplph.2013.06.013
[5] Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G, Sihachakr D. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci, 2000, 160:165-176.
pmid: 11164589
[6] Yu Y, Ye W X, He L, Cai X K, Liu T, Liu J. Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Rep, 2013, 32:1687-1701.
doi: 10.1007/s00299-013-1480-8
[7] Austin S, Baer M A, Helgeson J P. Transfer of resistance to potato leaf roll virus from Solanum brevidens into Solanum tuberosum by somatic fusion. Plant Sci, 1985, 39:75-81.
doi: 10.1016/0168-9452(85)90195-5
[8] Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T. Novel somatic hybrids (Solanum tuberosum L.+ Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet, 2008, 116:691-700.
doi: 10.1007/s00122-007-0702-2
[9] Bastia T, Carotenuto N, Basile B, Zoina A, Cardi T. Induction of novel organelle DNA variation and transfer of resistance to frost and Verticillium wilt in Solanum tuberosum through somatic hybridization with 1EBN S. commersonii. Euphytica, 2000, 116:1-10.
doi: 10.1023/A:1003943704037
[10] Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R. Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tissue Organ Cult, 2007, 91:179-189.
doi: 10.1007/s11240-007-9284-6
[11] Raina S, Rani V. GISH technology in plant genome research. Methods Cell Sci, 2001, 23:83-104.
doi: 10.1023/A:1013197705523
[12] Zluvova J, Lengerova M, Markova M, Hobza R, Nicolas M, Vyskot B, Charlesworth D, Negrutiu I, Janousek B. The inter-specific hybrid Silene latifolia × S. viscosa reveals early events of sex chromosome evolution. Evol Dev, 2005, 7:327-336.
pmid: 15982369
[13] 何礼. 茄属种及其种间体细胞杂种的染色体特征分析. 华中农业大学博士学位论文, 湖北武汉, 2013.
He L. Optimization of Potato Fluorescence in Situ Hybridization and Chromosome Characteristics of Solanum Genomes and the Inter-specific Somatic Hybrids. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[14] Wang H B, Cheng Z N, Wang B S, Dong J K, Ye W X, Yu Y, Liu T, Cai X K, Song B T, Liu J. Combining genome composition and differential gene expression analyses reveals that SmPGH1 contributes to bacterial wilt resistance in somatic hybrids. Plant Cell Rep, 2020, 39:1235-1248.
doi: 10.1007/s00299-020-02563-7
[15] Dong F, Song J, Naess S K, Helgeson J P, Gebhardt C, Jiang J. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor AppI Genet, 2000, 101:1001-1007.
doi: 10.1007/s001220051573
[16] He L, Liu J, Torres G A, Zhang H Q, Jiang J M, Xie C H. Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res, 2012, 21:5-13.
doi: 10.1007/s10577-012-9332-x
[17] Lou Q, Iovene M, Spooner D M, Buell C R, Jiang J. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 2010, 119:435-442.
doi: 10.1007/s00412-010-0269-6
[18] Pendinen G, Gavrilenko T, Jiang J, Spooner D M. Allopolyploid speciation of the Mexican tetraploid potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. Genome, 2008, 51:714-720.
doi: 10.1139/G08-052 pmid: 18772949
[19] Wu F, Tanksley S D. Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 2010, 11:182.
doi: 10.1186/1471-2164-11-182
[20] Malinska H, Tate J, Matyasek R, Leitch A, Soltis D, Soltis P, Kovarik A. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon(Asteraceae) allotetraploids. BMC Evol Biol, 2010, 10:291.
doi: 10.1186/1471-2148-10-291 pmid: 20858289
[21] Mlinarec J, Satovic Z, Malenica N, Ivancic-Bace I, Besendorfer V. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann Bot, 2012, 110:703-712.
doi: 10.1093/aob/mcs128
[22] Pontes O, Neves N, Silva M, Lewis M S, Madlung A, Comai L, Viegas W, Pikaard C S. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA, 2004, 101:18240-18245.
doi: 10.1073/pnas.0407258102
[23] Metcalfe C J, Bulazel K V, Ferreri G C, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge M D, O'Neill R J. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics, 2007, 177:2507-2517.
doi: 10.1534/genetics.107.082313 pmid: 18073443
[24] Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol, 2012, 22:658-667.
doi: 10.1016/j.cub.2012.02.062
[1] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[2] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[3] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[4] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[5] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[6] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[7] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[8] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[9] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[10] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[11] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[12] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[13] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[14] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[15] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁. 旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响[J]. 作物学报, 2021, 47(1): 138-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!