欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1894-1904.doi: 10.3724/SP.J.1006.2022.14114

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于三维模型重构的花生网纹厚度性状QTL分析

张胜忠1(), 胡晓辉1, 慈敦伟1, 杨伟强1, 王菲菲1, 邱俊兰2, 张天雨3, 钟文3, 于豪諒4, 孙冬平4, 邵战功5, 苗华荣1,*(), 陈静1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2威海市种子管理站, 山东威海 264200
    3山东省种子管理总站, 山东济南 250100
    4烟台枫林食品股份有限公司, 山东烟台 264108
    5莱西市农业农村局, 山东青岛 266600
  • 收稿日期:2021-07-01 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-28
  • 通讯作者: 苗华荣,陈静
  • 作者简介:E-mail: 593318769@qq.com
  • 基金资助:
    国家自然科学基金项目(32001584);山东省农业良种工程(2020LZGC001);山东省农业科学院创新工程(CXGC2021A09);山东省农业科学院创新工程(CXGC2021A46);青岛市科技惠民示范引导专项(20-3-4-26-nsh)

QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods

ZHANG Sheng-Zhong1(), HU Xiao-Hui1, CI Dun-Wei1, YANG Wei-Qiang1, WANG Fei-Fei1, QIU Jun-Lan2, ZHANG Tian-Yu3, ZHONG Wen3, YU Hao-Liang4, SUN Dong-Ping4, SHAO Zhan-Gong5, MIAO Hua-Rong1,*(), CHEN Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Weihai Seed Management Station, Weihai 264200, Shandong, China
    3Shandong Seed Administration Station, Jinan 250100, Shandong, China
    4Yantai Fenglin Foodstuff Co., Ltd, Yantai 264108, Shandong, China
    5Agricultural and Rural Bureau of Laixi City, Qingdao 266600, Shandong, China
  • Received:2021-07-01 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-28
  • Contact: MIAO Hua-Rong,CHEN Jing
  • Supported by:
    National Natural Science Foundation of China(32001584);Breeding Project from Department Science & Technology of Shandong Province(2020LZGC001);Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2021A09);Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2021A46);Qingdao People's Livelihood Science and Technology Program(20-3-4-26-nsh)

摘要:

荚果网纹厚度, 不仅是花生重要的品种特性, 也与花生适宜机械化收获特性密切相关。为探索花生荚果网纹厚度遗传基础, 本研究开发了一种基于三维模型重构测定网纹厚度的方法, 并且以品种花育36号和品系6-13配组衍生的181个重组自交系(recombinant inbred line, RIL)群体为材料, 考察了该RIL群体2019—2020年在山东青岛、东营和威海3个环境下表型数据。结果表明, 横向和纵向网纹厚度在RIL群体中均表现为连续分布和超亲遗传, 广义遗传率分别为0.92和0.91。利用前期构建的高密度遗传图谱, 共定位到11个与网纹厚度相关加性QTL, 其中6个与横纹厚度相关, 5个与纵纹厚度相关, 表型贡献率范围为5.21%~11.06%。定位到2个主效位点qLA2qLO9, 可在不同环境下表达, 其增效等位基因分别来自花育36号和6-13。共定位到22对上位性QTL, 共涉及34个位点, 表型贡献率范围为0.55%~4.37%, 其中10对与横纹厚度相关, 12对与纵纹厚度相关。本研究结果将为花生相关性状基因定位和分子育种提供重要的参考。

关键词: 花生, 荚果网纹, QTL, 加性, 上位性

Abstract:

The thickness of pod reticulation is not only an important criterion of peanut taxonomy, but also an agronomy trait related to peanut mechanical harvesting. To explore the genetic mechanism of reticulation thickness of peanut pods, a novel phenotyping method was developed to determine the reticulation thickness through reconstructing three dimensional (3D) models of pods. Meanwhile, a recombinant inbred line (RIL) population (181 lines) was derived from a cross between Huayu 36 and 6-13 and planted in three environments from 2019 to 2020, including Qingdao, Dongying, and Weihai of Shandong province. Phenotypic data of the RIL population were collected from these three environments. Two related traits, thicknesses of latitudinal and longitudinal protuberant veins (reticulations), had continuous and transgressive distributions in the RIL population, with broad-sense heritablities of 0.92 and 0.91, respectively. Based on a previous high density genetic map, a total of 11 additive QTLs were identified explaining phenotypic variations of 5.21%-11.06%, among which six QTLs were related to thickness of latitudinal protuberant vein and five related to thickness of longitudinal protuberant vein. Two major loci, qLA2 and qLO9 could be detected in more than one environments, with contributing alleles coming from Huayu 36 and 6-13, respectively. A total of 22 pairs of epistatic QTLs involving 34 loci were identified explaining phenotypic variations of 0.55%-4.37%, among which 10 pairs of interactions were related to thickness of latitudinal protuberant vein and 12 pairs were related to thickness of longitudinal protuberant vein. These results provide valuable information for further gene mapping and molecular breeding in peanut.

Key words: peanut, pod reticulation, QTLs, additive, epistatic

图1

基于花生荚果三维模型构建评价网纹深度的流程图 A: 相机拍摄的不同位置; B: 拍摄获得的图像序列; C: 图像特征点匹配; D: 构建荚果的稀疏点云; E: 构建荚果的稠密点云; F: 重构荚果三维模型表面; G: 提取特殊点三维坐标。白色矩形框代表网纹测定区域。红-绿-蓝图标表示三维图形。"

图2

2种荚果网纹厚度测定方法比较 A: 7个花生品种(系)的荚果照片; B: 7个花生品种(系)荚果的三维模型; C: 基于网纹去除法测定荚果网纹厚度; D: 基于三维模型法测定荚果网纹厚度。不同小写字母(a、b、c和d)代表经多重比较(LSD)在0.05水平差异显著。红-绿-蓝图标表示三维图形。"

图3

亲本和部分RIL家系的荚果网纹厚度表型变异 红-绿-蓝图标表示三维图形。"

表1

亲本和RIL群体表型数据统计"

性状
Trait
环境Environment 亲本Parents RIL群体RIL population
花育36号Huayu 36 6-13 平均值Mean 标准差SD 最小值Min. 最大值Max. 峰度Kurt. 偏度Skew. Shapiro-Wilk
横纹厚度
LA (mm)
E1 0.2431 0.0293** 0.1902 0.0829 0.0167 0.4448 -0.12 0.10 0.989*
E2 0.2320 0.0514** 0.1731 0.0914 0.0147 0.4854 0.54 0.60 0.977**
E3 0.1961 0.0496** 0.1993 0.0909 0.0101 0.4854 0.26 0.31 0.986*
纵纹厚度
LO (mm)
E1 0.4003 0.7165** 0.4884 0.1138 0.2704 0.7673 -0.27 0.50 0.970
E2 0.3811 0.7356** 0.4871 0.1277 0.2538 0.9096 -0.11 0.37 0.981**
E3 0.4278 0.7490** 0.4777 0.1340 0.1788 0.8519 0.74 0.81 0.948

图4

不同环境下RIL群体荚果网纹厚度的频率分布 E1: 2019青岛; E2: 2019东营; E3: 2020威海。E1: 2019 Qingdao; E2: 2019 Dongying; E3: 2020 Weihai."

表2

荚果网纹相关性状方差分析"

性状Trait 来源Source 自由度DF 方差SS 标准差MS FF-value PP value 遗传率h2
横纹厚度
LA
基因型G 169 0.0851 0.0005 20.4911 P<0.001 0.92
环境E 2 0.0015 0.0007 29.6624 P<0.001
基因型×环境G × E 252 0.0148 0.0001 2.3888 P<0.001
误差Error 833 0.0205 0
纵纹厚度
LO
基因型G 169 0.1643 0.0010 13.9010 P<0.001 0.91
环境E 2 0.0003 0.0002 2.2961 P<0.001
基因型×环境G × E 252 0.0311 0.0001 1.7620 P<0.001
误差Error 832 0.0582 0.0001

图5

不同环境下定位的QTL在连锁群上的分布 红色和蓝色分别表示横纹厚度和纵纹厚度。"

表3

花生荚果网纹性状相关QTL信息"

性状
Trait
QTL 环境Env. 染色体Chr. 标记区间
Marker interval
置信区间
C.I. (cM)
LOD 加性效应Add 贡献率PVE (%)
横纹厚度
LA
qLA2 E1 2 Marker938-Marker875 0-3.9 3.31 -0.0030 11.06
E2 2 Marker938-Marker875 0-5.6 2.91 -0.0029 6.08
E3 2 Marker938-Marker864 0-2.8 3.70 -0.0039 7.44
qLA3 E1 3 Marker1868-Marker1876 24.8-34.2 2.93 0.0028 5.62
qLA12 E3 12 Marker6681-Marker6697 91-105.2 2.64 0.0021 5.21
qLA15 E1 15 Marker9048-Marker9075 35-53.1 2.83 -0.0034 5.34
qLA16.1 E1 16 Marker9463-Marker10015 0.9-11.2 4.30 0.0047 10.79
qLA16.2 E2 16 Marker10139-Marker10315 19.3-24.8 3.59 -0.0034 7.55
纵纹厚度
LO
qLO4 E1 4 Marker2874-3754F 35-53.1 3.21 -0.0034 8.31
E3 4 Marker2874-3754F 34.3-52.7 3.10 -0.0040 8.74
qLO9 E1 9 Marker4980-Marker5581 0.9-11.2 3.76 0.0047 10.96
E2 9 Marker4980-Marker5533 1-11.2 3.85 0.0050 10.99
qLO12 E3 12 Marker6697-Marker6722 96-105.5 4.07 0.0045 10.71
qLO17 E2 17 Marker10418-Marker10431 0-8.4 2.61 -0.0033 6.05
qLO19 E2 19 Marker11749-Marker11769 11.5-15.5 3.10 0.0047 7.26

表4

荚果网纹相关性状上位性QTL信息"

性状
Trait
QTLi 染色体Chr. 标记区间
Marker interval
QTLj 染色体Chr. 标记区间
Marker interval
LOD 上位性效应
AA
贡献率
PVE (%)
横纹厚度
LA
Epi-qLA1 1 Marker344-Marker340 Epi-qLA7 7 AHGS0035-AHGS1954 5.57 0.0015 2.72
Epi-qLA2 2 Marker862-Marker746 Epi-qLA3.1 3 Marker1177-Marker1191 5.73 0.0021 2.64
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA10.3 10 Marker5972-Marker5996 5.24 0.0016 2.58
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA12 12 Marker6650-Marker6653 5.03 0.0017 2.82
Epi-qLA3.2 3 Marker1894-Marker1906 Epi-qLA16 16 Marker10343-Marker10344 5.44 0.0021 2.77
Epi-qLA5.1 5 Marker3174-Marker3169 Epi-qLA5.2 5 Marker3064-Marker3055 5.32 0.0023 1.77
Epi-qLA5.2 5 Marker3064-Marker3055 Epi-qLA10.2 10 Marker5872-Marker5972 6.93 0.0027 3.50
Epi-qLA5.1 5 Marker3174-Marker3169 Epi-qLA19 19 AHGS1634-Marker11752 5.26 -0.0015 2.65
Epi-qLA8 8 Marker4781-Marker4778 Epi-qLA9 9 Marker5648-Marker5656 5.93 0.0016 3.17
Epi-qLA9 9 Marker5648-Marker5656 Epi-qLA10.1 10 Marker5953-Marker5941 5.90 -0.0016 3.15
纵纹厚度
LO
Epi-qLO1.1 1 Marker25-Marker11 Epi-qLO15 15 Marker8480-Marker8432 5.44 0.1933 2.40
Epi-qLO1.2 1 Marker597-Marker601 Epi-qLO11.2 11 Marker6349-Marker6352 5.55 0.0957 3.69
Epi-qLO3 3 Marker1177-Marker1191 Epi-qLO11.1 11 Marker6220-Marker6275 9.91 -0.1251 4.37
Epi-qLO5 5 Marker3174-Marker3169 Epi-qLO10.2 10 Marker5872-Marker5972 5.46 -0.1136 3.51
Epi-qLO6.1 6 Marker3659-Marker3660 Epi-qLO20 20 Marker12781-Marker12791 6.64 0.1012 0.55
Epi-qLO6.2 6 Marker4191-Marker4236 Epi-qLO8.1 8 Marker4862-Marker4875 6.99 -0.1060 3.32
Epi-qLO7 7 Marker4658-Marker4605 Epi-qLO18 18 Marker11664-Marker11669 5.06 -0.1120 3.76
Epi-qLO8.2 8 AGGS1495-Marker4770 Epi-qLO15.2 15 Marker8513-Marker8628 6.83 -0.1403 1.91
Epi-qLO10.1 10 Marker5877-Marker5872 Epi-qLO11.1 11 Marker6220-Marker6275 5.39 0.2010 1.57
Epi-qLO10.2 10 Marker5872-Marker5972 Epi-qLO15.2 15 Marker8513-Marker8628 6.75 0.2029 3.89
Epi-qLO10.2 10 Marker5872-Marker5972 Epi-qLO16 17 Marker10786-C123 5.04 0.1245 2.59
Epi-qLO13 13 Marker6815-Marker6823 Epi-qLO15.1 15 Marker8503-Marker8489 5.52 0.1190 3.37
[1] FAO FAO Statistical Database. Rome, Italy. Available: http://faostat.fao.org.
[2] 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 55-58.
Yu S L. Chinese Peanut Cultivars and Their Pedigrees. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 55-58. (in Chinese)
[3] Mondal S, Badigannavar A M. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech, 2019, 9: 347.
doi: 10.1007/s13205-019-1881-7
[4] Patil V H. Genetic Studies in Groundnut (Arachis hypogaea L.). MS Thesis of Poona University, Poona, India, 1965.
[5] Jadhav G D, Shinde N N. Studies in groundnut (Arachis hypogaea). India J Agric Res, 1979, 13: 93-96.
[6] Murthy T G K, Tiwari S P, Reddy P S. A linkage group for genes governing pod characters in peanut.v Euphytica, 1988, 39: 43-46.
doi: 10.1007/BF00025109
[7] Manoharan V, Ramalingam R S. Inheritance of testa colour and pod reticulation in groundnut. Madras Agric J, 1992, 79: 646-648.
[8] 周金超, 杨鑫雷, 崔顺立, 侯名语, 陈焕英, 穆国俊, 刘立峰. 花生SSR标记与农艺性状的相关性. 作物学报, 2014, 40: 1197-1204.
Zhou J C, Yang X L, Cui S L, Hou M Y, Chen H Y, Mu G J, Liu L F. Correlation between SSR markers and agronomic traits in peanut (Arachis hypogaea L.). Acta Agron Sin, 2014, 40: 1197-1204. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01197
[9] 郭慧敏. 栽培种花生染色体片段置换系群体的构建及部分农艺性状QTL定位. 河北农业大学硕士学位论文,河北保定, 2014.
Guo H M. Construction of Chromosome Segement Substitution Lines and QTLs Mapping for Agronomic Traits in Cultivated Peanut. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014. (in Chinese with English abstract)
[10] Hu W J, Zhang C, Jiang Y Q, Huang C L, Liu Q, Xiong L Z, Yang W N, Chen F. Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography. Plant Phenomics, 2020, 2020: 1-12.
[11] Su Y, Xiao L T. 3D visualization and volume-based quantification of rice chalkiness in vivo by using high resolution micro-CT. Rice, 2020, 13: 69.
doi: 10.1186/s12284-020-00429-w
[12] Dornbusch T, Wernecke P, Diepenbrock W. A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecol Model, 2007, 200: 119-129.
[13] Ivanov N, Boissard P, Chapron M, Andrieu B. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric For Meteorol, 1995, 75: 85-102.
doi: 10.1016/0168-1923(94)02204-W
[14] Biskup B, Scharr H, Schurr U, Rascher U. A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ, 2007, 30: 1299-1308.
doi: 10.1111/j.1365-3040.2007.01702.x
[15] McCarthy C L, Hancock N H, Raine S R. Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intel Serv Robot, 2010, 3: 209-217.
[16] Pound M P, French A P, Murchie E H, Pridmore P. Automated recovery of three-dimensional models of plant shoots from multiple color images. Plant Physiol, 2014, 166: 1688-1698.
doi: 10.1104/pp.114.248971
[17] 胡鹏程, 郭焱, 李保国, 朱晋宇, 马韫韬. 基于多视角立体视觉的植株三维重建与精度评估. 农业工程学报, 2015, 31(11): 209-214.
Hu P C, Guo Y, Li B G, Zhu J Y, Ma Y T. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method. TCSA Engin, 2015, 31(11): 209-214. (in Chinese with English abstract)
[18] Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60: 91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
[19] 艾海舟, 兴军亮. 计算机视觉--算法与应用. 北京: 清华大学出版社, 2012. pp 237-290.
Ai H Z, Xing J L. Computer Vision:Algorithms and Applications. Beijing: Tsinghua University Press, 2012. pp 237-290. (in Chinese)
[20] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell, 2010, 32: 1362-1376.
doi: 10.1109/TPAMI.2009.161
[21] Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans Graph, 2013, 32: 29.
[22] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[23] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[24] Zhang S Z, Hu X H, Miao H R, Chu Y, Cui F G, Yang W Q, Wang C M, Shen Y, Xu T T, Zhao L B, Zhang J C, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019, 19: 537.
doi: 10.1186/s12870-019-2164-5
[25] Silva L C, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75-119.
[26] Voorrips R E. Mapchart: software for the graphical presentation of linkage map and QTL. J Hered, 2002, 93: 77-78.
pmid: 12011185
[27] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newl, 1997, 14: 11-13.
[28] Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Plant, 2017, 37: 17.
[29] Wang Z J, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827
[30] Hagiwara W E, Onishi K, Takamure O I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27-35.
doi: 10.1007/s10681-006-9085-8
[31] Balakrishnan D, Surapaneni M, Yadavalli V R, Addanki K R, Mesapogu S, Beerelli K, Neelamraju S. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross. Sci Rep, 2020, 10: 7766.
doi: 10.1038/s41598-020-64300-0 pmid: 32385410
[32] Li Z K, Luo L J, Mei H W, Wang Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753.
doi: 10.1093/genetics/158.4.1737 pmid: 11514459
[33] Carlbog O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618-625.
doi: 10.1038/nrg1407
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[4] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[7] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[10] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[11] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[12] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[13] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[14] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[15] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[2] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[3] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[4] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[5] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[6] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[7] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[8] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[9] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .
[10] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .