欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1905-1913.doi: 10.3724/SP.J.1006.2022.11069

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦顶端小穗退化突变体asd1基因定位

杜启迪1,2(), 郭会君2, 熊宏春2, 谢永盾2, 赵林姝2, 古佳玉2, 赵世荣2, 丁玉萍2, 宋希云1, 刘录祥2,*()   

  1. 1青岛农业大学生命科学学院, 山东青岛 266109
    2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学 工程 / 国家农作物航天诱变技术改良中心, 北京 100081
  • 收稿日期:2021-08-06 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-13
  • 通讯作者: 刘录祥
  • 作者简介:E-mail: duqididd@163.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-03);中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202002)

Gene mapping of apical spikelet degeneration mutant asd1 in wheat

DU Qi-Di1,2(), GUO Hui-Jun2, XIONG Hong-Chun2, XIE Yong-Dun2, ZHAO Lin-Shu2, GU Jia-Yu2, ZHAO Shi-Rong2, DING Yu-Ping2, SONG Xi-Yun1, LIU Lu-Xiang2,*()   

  1. 1College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
  • Received:2021-08-06 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-13
  • Contact: LIU Lu-Xiang
  • Supported by:
    China Agriculture Research System(CARS-03);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202002)

摘要:

穗粒数是小麦产量三要素建成的关键因子, 深入挖掘穗部发育调控基因有助于培育高产小麦品种。以小麦品种京411为野生型, 经EMS诱变获得了表型稳定的小穗退化突变体asd1 (apical spikelet degeneration 1)。该突变体表现顶端小穗明显退化, 穗长缩短了约40%, 结实小穗数减少了约35%, 穗粒数显著减少了54%, 同时株高也明显降低。利用京411×asd1遗传群体的F2和F3代表型数据分析表明, 顶端小穗退化性状受1对主效隐性基因控制。采用混合群体分离分析法(BSA), 结合测序所得SNP位点, 在7A染色体上开发了7个KASP标记, 将目标突变基因定位在7A染色体短臂9.91 Mb物理区间内, 遗传距离为17.62 cM, 推断该区段存在一个新的控制小麦花器官发育及穗部形态发育的重要基因。本研究所鉴定的小麦穗发育控制区段有助于深入解析小麦小穗形成的遗传基础, 为进一步揭示小麦产量形成的分子机理提供突变基因。

关键词: 小麦, 顶端小穗退化, 遗传分析, 基因定位

Abstract:

The number of grains per spike is one of the three key factors for yield and production in wheat. It is helpful to cultivate high-yield wheat varieties to elaborate the regulation pathway of spike development. A stable mutant of apical spikelet degeneration (asd1) was derived by EMS treatment, the wheat variety Jing 411 was used as wild type. The mutant asd1 showed that the apical spikelets were significantly degenerated, the spike length was shortened by 40%, the number of spikelets per spike was reduced by 35%, the number of grains per spike was significantly reduced by 54%, and the plant height was also significantly reduced. A genetic segregation population, Jing 411 × asd1, was developed, and phenotypic performances of both F2 and F3 were investigated in field. It showed that the degeneration of apical spikelet was controlled by a recessive gene. Using Bulked Segregant Analysis (BSA) and exon capture, SNPs were obtained and 7 KASP markers were further developed. The target mutation gene was mapped on chromosome 7A and narrowed down to a 9.91 Mb region on 7AS, which represented a genetic distance of 17.62 cM. The region had not yet been reported in regulating spikelet development and the target mutant gene might be a novel gene that controls the development of spike morphology in wheat, which will bring new insights for further understanding of the genetic basis of spikelet development in wheat.

Key words: wheat, apical spikelet degeneration, genetic analysis, gene mapping

图1

突变体asd1的小穗退化表型与穗长和株高 (A)~(D)小花原基分化期至四分体时期的麦穗(标尺为1 mm); (E) 孕穗期麦穗(标尺为1 cm); (F) 灌浆期麦穗(标尺为2 cm); (G) 灌浆期单株(标尺为15 cm); (H) 穗长; (I) 株高。图中左侧表示野生型, 右侧表示突变体。"

图2

突变体asd1顶端小穗中花器官退化 (A) 突变体和野生型顶端小穗至第8小穗的解剖图; (B) 碘-碘化钾染色测定花粉活力; (C) 结实小穗数; (D) 每穗粒数。"

附表1

J411×asd1的F2群体和F3家系中顶端小穗退化单株表型"

单株
Plant
F2表型
Phenotype of F2
F2小穗数
Number of spikelet of F2
F3小穗数
Number of spikelet of F3
F3小穗数平均值±标准差
Average ± Standard Deviation
F3表型
Phenotype of F3
重复一
Repeat one
重复二
Repeat two
重复一
Repeat one
重复二
Repeat two
重复三
Repeat three
重复四
Repeat four
京411 W 20 22 19 17 19 18 18.3±0.96 W
京411 W 18 19 17 17 17 18 17.3±0.50 W
asd1 M 9 12 13 10 11 9 10.8±1.71 M
asd1 M 11 11 12 10 8 9 9.8±1.71 M
1 M 12 13 11 13 10 11 11.3±1.26 M
2 M 13 12 10 12 10 9 10.3±1.26 M
3 M 12 13 9 11 13 10 10.8±1.71 M
4 M 13 11 12 13 11 11 11.8±0.96 M
5 M 11 12 10 11 9 9 9.8±0.96 M
6 M 13 12 9 10 10 11 10.0±0.82 M
7 M 13 10 8 10 12 12 10.5±1.91 M
8 M 13 12 12 10 12 12 11.5±1.00 M
9 M 13 11 11 13 10 11 11.3±1.26 M
10 M 14 9 8 8 10 10 9.0±1.15 M
11 M 14 9 10 10 8 9 9.3±0.96 M
12 M 12 12 10 10 12 11 10.8±0.96 M
13 M 14 14 10 11 11 12 11.0±0.82 M
14 M 14 13 10 10 11 12 10.8±0.96 M
15 M 11 13 10 11 11 13 11.3±1.26 M
16 M 12 10 10 11 10 11 10.5±0.58 M
17 M 14 14 9 10 11 10 10.0±0.82 M
18 M 12 10 9 11 8 9 9.3±1.26 M
19 M 13 13 12 11 8 10 10.3±1.71 M
20 M 11 11 8 10 10 10 9.5±1.00 M
21 M 13 14 10 12 12 12 11.5±1.00 M
22 M 10 12 10 10 10 11 10.3±0.50 M
23 M 12 10 8 9 8 8 8.3±0.50 M
24 M 13 12 9 10 11 12 10.5±1.29 M
25 M 13 13 9 10 12 12 10.8±1.50 M
26 M 11 11 10 10 10 11 10.3±0.50 M
27 M 12 12 8 10 8 8 8.5±1.00 M
28 M 11 11 7 9 12 10 9.5±2.08 M
29 M 11 8 9 10 9 9 9.3±0.50 M
30 M 10 11 11 12 10 10 10.8±0.96 M
31 M 14 14 10 11 11 12 11.0±0.82 M
32 M 13 12 9 9 10 11 9.8±0.96 M
33 M 14 14 9 9 11 12 10.3±1.50 M
34 M 14 12 12 13 9 10 11.0±1.83 M
35 M 11 14 9 9 11 12 10.3±1.50 M
36 M 12 14 10 11 11 12 11.0±0.82 M
37 M 13 13 9 10 13 12 11.0±1.83 M
38 M 13 14 9 9 10 12 10.0±1.41 M
39 M 14 12 11 11 11 12 11.3±0.50 M
40 M 14 12 13 12 10 12 11.8±1.26 M
41 M 13 10 8 10 8 10 9.0±1.15 M
42 M 14 13 11 11 11 12 11.3±0.50 M
43 M 14 10 10 11 9 10 10.0±0.82 M
44 M 13 13 9 9 10 11 9.8±0.96 M
45 M 13 12 8 9 8 8 8.3±0.50 M
46 M 13 13 8 8 10 12 9.5±1.91 M
47 M 14 14 9 12 9 11 10.3±1.50 M
48 M 9 11 10 11 11 13 11.3±1.26 M
49 M 12 12 8 10 10 12 10.0±1.63 M
50 M 14 11 9 11 11 11 10.5±1.00 M
51 M 14 12 10 11 9 10 10.0±0.82 M
52 M 12 10 10 11 11 11 10.8±0.50 M
53 M 13 14 8 8 10 12 9.5±1.91 M
54 M 13 12 7 9 9 9 8.5±1.00 M
55 M 13 9 12 11 8 8 9.8±2.06 M
56 M 13 12 10 11 8 10 9.8±1.26 M
57 M 10 11 11 11 10 10 10.5±0.58 M
58 M 11 11 9 9 9 12 9.8±1.50 M
59 M 13 11 9 10 9 11 9.8±0.96 M
60 M 12 12 7 8 9 11 8.8±1.71 M
61 M 14 14 9 10 12 12 10.8±1.50 M
62 M 13 13 10 10 10 11 10.3±0.50 M
63 M 14 12 11 12 13 11 11.8±0.96 M
64 M 12 11 9 10 8 9 9.0±0.82 M
65 M 8 11 8 10 9 9 9.0±0.82 M
66 M 13 13 9 10 9 10 9.5±0.58 M
67 M 13 14 10 13 10 10 10.8±1.50 M
68 M 13 13 10 11 10 12 10.8±0.96 M
69 M 11 12 11 13 11 12 11.8±0.96 M
70 M 14 13 10 10 8 9 9.3±0.96 M
71 M 12 12 11 11 8 10 10.0±1.41 M
72 M 12 12 11 12 9 10 10.5±1.29 M
73 M 13 13 10 12 8 9 9.8±1.71 M
74 M 10 13 10 12 10 11 10.8±0.96 M
75 M 11 10 7 10 9 9 8.8±1.26 M
76 M 12 10 9 9 10 11 9.8±0.96 M
77 M 10 12 7 9 10 10 9.0±1.41 M
78 M 12 10 10 12 9 11 10.5±1.29 M
79 M 11 10 10 11 11 12 11.0±0.82 M
80 M 10 12 10 11 10 11 10.5±0.58 M
81 M 11 12 10 10 11 12 10.8±0.96 M
82 M 13 11 11 11 12 12 11.5±0.58 M
83 M 12 12 8 10 9 12 9.8±1.71 M
84 M 11 13 8 11 9 9 9.3±1.26 M
85 M 13 13 11 12 10 11 11.0±0.82 M
86 M 11 10 8 9 8 8 8.3±0.50 M
87 M 12 12 10 10 11 12 10.8±0.96 M
88 M 14 12 8 8 11 10 9.3±1.50 M
89 M 12 14 12 13 10 12 11.8±1.26 M
90 M 12 11 9 10 8 9 9.0±0.82 M
91 M 14 13 10 11 10 11 10.5±0.58 M
92 M 14 13 14 18 16 16 16.0±1.63 H
93 M 13 11 9 10 11 12 10.5±1.29 M
94 M 11 13 8 8 10 11 9.3±1.50 M
95 M 11 12 10 11 8 10 9.8±1.26 M
96 M 13 11 7 7 8 11 8.3±1.89 M
97 M 12 11 9 10 11 12 10.5±1.29 M
98 M 12 11 10 10 9 9 9.5±0.58 M
99 M 13 13 11 11 8 10 10.0±1.41 M
100 M 12 13 11 11 10 10 10.5±0.58 M
101 M 12 12 10 11 8 10 9.8±1.26 M
102 M 14 10 9 9 9 11 9.5±1.00 M
103 M 10 10 10 11 11 13 11.3±1.26 M
104 M 13 10 8 10 8 9 8.8±0.96 M
105 M 13 10 7 8 11 11 9.3±2.06 M
106 M 11 9 10 11 7 8 9.0±1.83 M
107 M 11 13 10 11 9 10 10.0±0.82 M
108 M 10 10 10 10 8 8 9.0±1.15 M
109 M 12 14 6 8 11 11 9.0±2.45 M
110 M 12 12 10 11 10 10 10.3±0.50 M
111 M 12 12 9 10 8 9 9.0±0.82 M
112 M 10 10 8 9 9 10 9.0±0.82 M
113 M 12 11 11 12 10 11 11.0±0.82 M
114 M 11 11 11 12 11 11 11.3±0.50 M
115 M 11 12 11 12 8 8 9.8±2.06 M
116 M 13 12 10 11 9 10 10.0±0.82 M
117 M 10 11 10 11 10 11 10.5±0.58 M
118 M 11 11 10 11 6 9 9.0±2.16 M
119 M 13 14 8 9 8 9 8.5±0.58 M
120 M 10 12 10 10 10 12 10.5±1.00 M
121 M 14 14 8 9 8 9 8.5±0.58 M
122 M 11 9 11 12 10 11 11.0±0.82 M
123 M 10 8 8 8 8 9 8.3±0.50 M
124 M 12 11 10 10 8 9 9.3±0.96 M
125 M 13 13 10 11 9 9 9.8±0.96 M
126 M 10 12 10 11 10 10 10.3±0.50 M
127 M 13 12 10 12 10 11 10.8±0.96 M
128 M 11 10 10 12 10 10 10.5±1.00 M
129 M 13 12 10 11 9 11 10.3±0.96 M
130 M 12 12 9 11 11 12 10.8±1.26 M
131 M 14 14 8 10 9 11 9.5±1.29 M
132 M 14 11 10 10 9 10 9.8±0.50 M
133 M 11 12 11 12 9 9 10.3±1.50 M
134 M 12 11 9 10 8 8 8.8±0.96 M
135 M 10 11 8 10 8 8 8.5±1.00 M
136 M 13 13 10 10 8 10 9.5±1.00 M
137 M 12 14 11 12 12 12 11.8±0.50 M
138 M 9 12 10 11 11 11 10.8±0.50 M
139 M 12 11 8 11 9 12 10.0±1.83 M
140 M 10 11 10 10 8 9 9.3±0.96 M
141 M 13 12 10 11 9 10 10.0±0.82 M
142 M 14 11 10 11 9 10 10.0±0.82 M
143 M 12 13 10 11 9 10 10.0±0.82 M
144 M 10 11 6 6 11 8 7.8±2.36 M
145 M 14 13 10 11 6 9 9.0±2.16 M
146 M 11 13 11 12 9 10 10.5±1.29 M
147 M 12 12 13 12 10 12 11.8±1.26 M
148 M 14 13 11 9 9 11 10.0±1.15 M
149 M 13 12 9 11 10 10 10.0±0.82 M
150 M 12 14 9 8 8 8 8.3±0.50 M
151 M 12 12 9 10 10 11 10.0±0.82 M
152 M 14 11 6 11 8 9 8.5±2.08 M
153 M 14 11 9 11 8 9 9.3±1.26 M
154 M 12 9 5 10 8 8 7.8±2.06 M
155 M 12 13 10 11 8 9 9.5±1.29 M
156 M 13 13 8 10 9 8 8.8±0.96 M
157 M 11 10 10 10 7 10 9.3±1.50 M
158 M 11 12 8 8 8 8 8.0±0.00 M
159 M 12 12 10 10 9 10 9.8±0.50 M
160 M 11 12 11 10 9 9 9.8±0.96 M
161 M 10 11 10 11 8 9 9.5±1.29 M
162 M 14 13 8 11 7 10 9.0±1.83 M
163 M 12 12 9 10 10 11 10.0±0.82 M
164 M 14 11 7 9 7 9 8.0±1.15 M
165 M 13 15 17 15 14 15 15.3±1.26 H
166 M 10 10 10 12 10 10 10.5±1.00 M
167 M 11 10 10 11 6 8 8.8±2.22 M
168 M 11 13 9 10 10 11 10.0±0.82 M
169 M 10 8 7 9 10 12 9.5±2.08 M
170 M 11 13 11 12 9 9 10.3±1.50 M
171 M 14 12 8 10 9 10 9.3±0.96 M
172 M 11 13 10 10 9 9 9.5±0.58 M
173 M 14 11 12 11 12 12 11.8±0.50 M
174 M 12 14 12 12 10 11 11.3±0.96 M
175 M 14 14 9 9 11 12 10.3±1.50 M
176 M 13 14 10 10 10 10 10.0±0.00 M
177 M 10 12 8 10 8 9 8.8±0.96 M
178 M 8 11 8 9 8 9 8.5±0.58 M
179 M 10 9 8 9 8 9 8.5±0.58 M
180 M 11 10 7 8 8 10 8.3±1.26 M
181 M 13 12 9 10 9 9 9.3±0.50 M
182 M 11 13 8 9 11 11 9.8±1.50 M
183 M 12 13 11 12 12 13 12.0±0.82 M
184 M 14 13 8 9 10 11 9.5±1.29 M
185 M 11 12 10 11 12 12 11.3±0.96 M
186 M 10 11 12 13 12 13 12.5±0.58 M
187 M 11 12 9 10 8 8 8.8±0.96 M
188 M 11 11 10 11 9 10 10.0±0.82 M
189 M 13 14 6 8 9 8 7.8±1.26 M
190 M 14 14 9 10 6 8 8.3±1.71 M
191 M 12 10 8 8 8 8 8.0±0.00 M
192 M 13 11 7 9 8 9 8.3±0.96 M
193 M 12 11 9 9 9 10 9.3±0.50 M
194 M 12 10 8 9 8 9 8.5±0.58 M
195 M 8 11 6 7 6 7 6.5±0.58 M
196 M 13 12 8 9 8 9 8.5±0.58 M
197 M 12 12 9 9 10 11 9.8±0.96 M
198 M 14 12 9 10 10 11 10.0±0.82 M
199 M 11 13 11 11 8 9 9.8±1.50 M
200 M 12 12 9 9 6 8 8.0±1.41 M
201 M 9 10 11 11 10 11 10.8±0.50 M
202 M 6 8 9 10 8 9 9.0±0.82 M
203 M 12 10 10 11 10 11 10.5±0.58 M
204 M 13 13 13 13 13 13 13.0±0.00 M
205 M 14 12 9 10 11 12 10.5±1.29 M
206 M 12 12 12 12 12 12 12.0±0.00 M
207 M 14 11 11 12 10 11 11.0±0.82 M
208 M 13 10 11 10 10 11 10.5±0.58 M
209 M 13 11 8 10 9 10 9.3±0.96 M
210 M 10 12 10 10 11 11 10.5±0.58 M
211 M 14 14 12 12 10 11 11.3±0.96 M
212 M 13 14 9 11 9 11 10.0±1.15 M
213 M 12 13 10 11 9 10 10.0±0.82 M
214 M 10 11 9 9 8 9 8.8±0.50 M
215 M 14 11 11 11 10 10 10.5±0.58 M
216 M 14 11 8 8 7 8 7.8±0.50 M
217 M 13 11 11 12 10 11 11.0±0.82 M
218 M 12 14 9 10 10 10 9.8±0.50 M
219 M 11 13 8 9 8 8 8.3±0.50 M
220 M 12 11 11 12 8 9 10.0±1.83 M
221 M 13 14 10 11 9 10 10.0±0.82 M
222 M 13 14 9 9 9 10 9.3±0.50 M
223 M 13 10 8 9 9 10 9.0±0.82 M
224 M 14 12 9 10 9 10 9.5±0.58 M
225 M 14 12 7 8 8 8 7.8±0.50 M
226 M 12 13 11 7 10 10 9.5±1.73 M
227 M 15 15 15 14 17 15 15.3±1.26 H
228 M 14 14 9 9 8 9 8.8±0.50 M
229 M 11 14 9 10 9 10 9.5±0.58 M
230 M 8 11 8 8 10 12 9.5±1.91 M
231 M 14 12 7 8 8 9 8.0±0.82 M
232 M 9 10 9 11 9 10 9.8±0.96 M
233 M 10 12 8 10 10 11 9.8±1.26 M
234 M 14 11 8 9 10 10 9.3±0.96 M
235 M 14 12 8 9 8 9 8.5±0.58 M
236 M 14 13 8 9 8 9 8.5±0.58 M
237 M 11 9 9 9 7 9 8.5±1.00 M
238 M 11 12 11 11 8 9 9.8±1.50 M
239 M 11 14 9 10 9 11 9.8±0.96 M
240 M 14 14 15 15 18 14 15.5±1.73 H
241 M 11 11 8 10 7 8 8.3±1.26 M
242 M 14 12 10 11 9 11 10.3±0.96 M
243 M 13 14 9 10 11 11 10.3±0.96 M
244 M 10 10 8 10 10 10 9.5±1.00 M
245 M 11 10 9 10 10 10 9.8±0.50 M
246 M 10 10 8 9 10 11 9.5±1.29 M
247 M 11 10 6 10 10 10 9.0±2.00 M
248 M 9 9 9 9 8 9 8.8±0.50 M
249 M 14 13 9 11 10 10 10.0±0.82 M
250 M 14 11 8 9 9 10 9.0±0.82 M
251 M 13 11 11 11 9 9 10.0±1.15 M
252 M 12 12 6 7 7 8 7.0±0.82 M
253 M 9 12 8 9 11 12 10.0±1.83 M
254 M 12 12 8 10 8 9 8.8±0.96 M
255 M 13 11 10 10 9 10 9.8±0.50 M
256 M 13 11 9 10 9 10 9.5±0.58 M
257 M 12 12 10 10 9 10 9.8±0.50 M
258 M 10 10 7 8 7 8 7.5±0.58 M
259 M 14 12 8 10 9 10 9.3±0.96 M
260 M 11 12 8 8 8 9 8.3±0.50 M
261 M 12 10 8 9 10 11 9.5±1.29 M
262 M 10 11 9 9 8 8 8.5±0.58 M
263 M 10 11 7 8 10 11 9.0±1.83 M
264 M 12 10 8 8 9 10 8.8±0.96 M
265 M 13 11 8 10 8 8 8.5±1.00 M
266 M 11 11 9 9 9 9 9.0±0.00 M
267 M 11 14 9 10 10 10 9.8±0.50 M
268 M 13 10 7 8 11 11 9.3±2.06 M
269 M 12 11 9 10 9 9 9.3±0.50 M
270 M 11 13 9 9 9 9 9.0±0.00 M
271 M 8 11 7 8 6 9 7.5±1.29 M
272 M 12 12 8 10 10 11 9.8±1.26 M
273 M 11 12 7 9 9 11 9.0±1.63 M
274 M 12 13 10 10 8 8 9.0±1.15 M
275 M 12 13 8 8 8 9 8.3±0.50 M
276 M 13 13 15 13 18 15 15.3±2.06 H
277 M 13 13 14 14 18 16 15.5±1.91 H
278 M 12 10 9 9 9 10 9.3±0.50 M
279 M 12 13 9 10 7 9 8.8±1.26 M
280 M 14 12 9 10 10 10 9.8±0.50 M
281 M 12 11 9 10 8 8 8.8±0.96 M
282 M 13 12 9 9 9 10 9.3±0.50 M

表1

J411×asd1 F2和F3群体中小穗退化表型单株与非退化表型单株卡方分析"

世代
Generation
表型
Phenotype
观察值
Observed count
(O)
期望值
Expected count
(E)
(O-E)2/E χ2 P (df=1)
F2 退化表型 Degenerative phenotype 281 296 0.76 1.01 0.315
非退化表型Nondegenerative phenotype 902 887 0.25
合计 Total 1183 1183 1.01
F3 退化表型 Degenerative phenotype 276 296 1.35 3.15 0.076
非退化表型Nondegenerative phenotype 927 887 1.80
合计 Total 1183 1183 3.15

附表2

J411×asd1分离群体在子代与亲本间差异SNP"

染色体
Chr.
SNP统计
Number of SNPs
双亲间SNP
SNPs between parents
F2子代SNP
SNPs between F2 bulks
双亲与子代间综合SNP
SNPs between parents and bulks
SNP分布
Distribution of SNPs
1A 713 445 184 34 均匀分布 Uniform distribution
1B 954 581 283 43 均匀分布 Uniform distribution
1D 478 368 111 29 均匀分布 Uniform distribution
2A 847 570 235 60 均匀分布 Uniform distribution
2B 1035 633 325 54 均匀分布 Uniform distribution
2D 768 542 232 39 均匀分布 Uniform distribution
3A 769 517 194 39 均匀分布 Uniform distribution
3B 1060 648 343 85 均匀分布 Uniform distribution
3D 567 389 191 39 均匀分布 Uniform distribution
4A 776 516 215 43 均匀分布 Uniform distribution
4B 600 395 171 36 均匀分布 Uniform distribution
4D 449 332 96 20 均匀分布 Uniform distribution
5A 764 499 195 34 均匀分布 Uniform distribution
5B 974 622 323 57 均匀分布 Uniform distribution
5D 557 392 135 37 均匀分布 Uniform distribution
6A 654 426 200 23 均匀分布 Uniform distribution
6B 1023 604 293 53 均匀分布 Uniform distribution
6D 429 314 104 39 均匀分布 Uniform distribution
7A 1089 681 370 87 富集于染色体短臂末端Enriched at the end of 7AS
7B 909 535 283 39 均匀分布 Uniform distribution
7D 762 581 151 42 均匀分布 Uniform distribution

图3

asd1的主效突变基因位于7AS染色体上 (A) ED关联分析图。(B) 7AS染色体上0~60 Mb区间内SNP统计。"

附表3

KASP标记序列信息"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
SP1 TCCAGCAAGTTGTAATCTGCATG CTGACCGTCCGTCCCCTA
TCCAGCAAGTTGTAATCTGCATA
SP2 CAGTGTCCTCGAGCTGCG ATGGCAAAAACGTAACGACC
CAGTGTCCTCGAGCTGCA
SP3 CCGTGTGCATCGACAAGCTG TGGGACGTGAAAGTGGTCGT
CCGTGTGCATCGACAAGCTA
SP4 CCTGAGCAGTATCTTTCCATCTTT TCTGCCAAGACAAGAATGCA
CCTGAGCAGTATCTTTCCATCTTC
SPT82 GGTCTCGGACATGAGCTTCTCG CCGACGAGTTCATCTCCTCCT
GGTCTCGGACATGAGCTTCTCA
SP6 GTGAGGTCGCTGAACTTGC CCGGTACCTCATCGAGTACAG
GTGAGGTCGCTGAACTTGT
SP7 GCCCTAACCTCCCCTGGC CTTTGTGCGTGGCTGATG
GCCCTAACCTCCCCTGGT

图4

利用KASP标记在7A染色体上构建遗传连锁图谱 (A) asd1突变基因遗传图谱, 橙色横线代表预测目标基因所在位置。(B) 基于J411×asd1 F2群体小穗顶端退化为表型检测到的LOD曲线。"

[1] 余泽高, 许立俊. 小麦穗部性状间的相关及穗粒数改良途径的研究. 湖北农业科学, 2002, (6): 38-40.
Yu Z G, Xu L J. Analysis of correlation of spike-section characteristics and way of reform kernel number in wheat. Hubei Agric Sci, 2002, (6): 38-40.
[2] 王兆龙, 曹卫星, 戴廷波. 小麦穗粒数形成的基因型差异及增粒途径分析. 作物学报, 2001, 27: 236-242.
Wang Z L, Cao W X, Dai T B. Genotypic differences in formation of kernel number per spike and analysis of improvement approaches in wheat. Acta Agron Sin, 2001, 27: 236-242.
[3] Zhang B, Liu X, Xu W N, Chang J Z, Li A, Mao X G, Zhang X Y, Jing R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep, 2015, 5: 12211.
doi: 10.1038/srep12211 pmid: 26197925
[4] 徐伟娜. 小麦穗发育相关基因TaSPL20的生物学功能分析. 中国农业科学院硕士学位论文,北京, 2017.
Xu W N. Biological Function of Ear Development Related Gene TaSPL20 from Wheat (Triticum aestivum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017.
[5] Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017, 174: 1177-1191.
doi: 10.1104/pp.17.00113 pmid: 28424214
[6] Wang Y G, Yu H P, Tian C H, Sajjad M, Gao C X, Tong Y P, Wang X F, Jiao Y L. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol, 2017, 175: 746-757.
doi: 10.1104/pp.17.00694
[7] Oxana D, Caroline P, Richard S, Petr M, Ekaterina B, Florent M, Audrey C, Nobuyoshi W, Elisa P, Nadine G, Véronique G, Charles P, Yuriy L O, Alexander A K, Hélène B, Elena S, Lyudmila L, Jerome S. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199.
doi: 10.1104/pp.114.250043
[8] Li Y P, Li L, Zhao M C, Guo L, Guo X X, Zhao D, Batool A, Dong B D, Xu H X, Cui S J, Zhang A M, Fu X D, Li J M, Jing R L, Liu X G. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.13535
[9] Dixon L E, Greenwood J R, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain S M, Boden S A. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell, 2018, 30: 563-581.
doi: 10.1105/tpc.17.00961
[10] Boden S A, Cavanagh C, Cullis B R, Ramm K, Greenwood J, Finnegan E J, Trevaskis B, Swain S M. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant, 2015, 1: 14016.
doi: 10.1038/nplants.2014.16
[11] Okada T, Jayasinghe J E A R M, Eckermann P, Watson-Haigh N S, Warner P, Hendrikse Y, Baes M, Tucker E J, Laga H, Kato K, Albertsen M, Wolters P, Fleury D, Baumann U, Whitford R. Effects of Rht-B1and Ppd-D1 loci on pollinator traits in wheat. Theor Appl Genet, 2019, 132: 1965-1979.
doi: 10.1007/s00122-019-03329-w
[12] 周丽敏. 小麦穗发育异常相关基因 TaSDA1的定位研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2016.
Zhou L M. Mapping Research of TASDA1 Gene of Triricum aestivum Spike Development Atrophy1. MS Thesis of Northwest A&F University of Agriculture and Forestry, Yangling, Shaanxi, China, 2016.
[13] 蒋方山, 郭营, 许云峰, 李瑞军, 李斯深. EMS诱变的小麦基部小穗不孕突变体的鉴定与小穗形态发育. 麦类作物学报, 2008, 28: 249-253.
Jiang F S, Guo Y, Xu Y F, Li R J, Li S S. Identification of a distal spikelet sterility mutant in wheat and spikelet morphological development. J Triticeae Crops, 2008, 28: 249-253.
[14] 顾晶晶. 小麦穗发育突变体SMS1的鉴定和基因定位. 河南农业大学硕士学位论文,河南郑州, 2017.
Gu J J. Identification and Genetic Mapping of a Sterile and Malformed Spike 1 Gene in Common Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017.
[15] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182-5187.
doi: 10.1073/pnas.1815465116
[16] Xia C, Zhang L C, Zou C, Gu Y Q, Duan J L, Zhao G Y, Wu J J, Liu Y, Fang X H, Gao L F, Jiao Y N, Sun J Q, Pan Y H, Liu X, Jia J Z, Kong X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun, 2017, 8:15407.
doi: 10.1038/ncomms15407
[17] Ni F, Qi J, Hao Q Q, Bo L, Luo M C, Wang Y, Chen F J, Wang S Y, Zhang C Z, Epstein L, Zhao X Y, Wang H G, Zhang X S, Chen C X, Sun L Z, Fu D L. Wheat Ms2encodes for an orphan protein that confers male sterility in grass species. Nat Commun, 2017, 8: 15121.
doi: 10.1038/ncomms15121
[18] 翟虎渠, 刘秉华. 矮败小麦创制与应用. 中国农业科学, 2009, 42: 4127-4131.
Zhai H Q, Liu B H. The innovation of dwarf male sterile wheat and its application in wheat breading. Sci Agric Sin, 2009, 42: 4127-4131.
[19] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100
[20] Li C X, Lin H Q, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3play critical and redundant roles in spikelet development and spike determinacy. Development, 2019, 146: dev175398.
doi: 10.1242/dev.175398
[21] Jill C P, Elizabeth A K. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics, 2006, 174: 421-437.
doi: 10.1534/genetics.106.057125
[22] Sun C F, Niu Y C, Ye X, Dong J J, Hu W S, Zeng Q K, Chen Z H, Tian Y Y, Zhang J, Lu M X. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Gnomics, 2017, 18: 567.
[23] Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14: 1941-1955.
doi: 10.1111/pbi.12559
[24] Robert K, Nicholas B, Ricardo R G, Jane A C, Archana P, Keywan H P, Cristobal U, Andrew L P. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 2015, 10: e0137549.
doi: 10.1371/journal.pone.0137549
[25] Yao Z, You F M, N' Diaye A, Knox R E, McCartney C, Hiebert C W, Pozniak C, Xu W. Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 2020, 21: 360.
doi: 10.1186/s12859-020-03704-1
[26] Hill J T, Demarest B L, Bisgrove B W, Bushra G, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112
[27] 张顺麟. 冬小麦淀粉合成关键基因TaSSIVb特性分析与等位变异挖掘. 中国农业科学院硕士学位论文,北京, 2019.
Zhang S L. Characterization of Starch Synthesis Key Gene TaSSIVb and Mining of its Mutation Alleles in Winter Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019.
[28] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[29] Koji M, Shigeo T, Hironori K, Yasunari O. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181.
doi: 10.1046/j.0960-7412.2001.01203.x
[30] 李存东, 曹卫星, 戴廷波, 严美春, 王兆龙. 小麦小花原基分化和退化的动态模式与特征. 中国农业科学, 1999, 32(5): 98-100.
Li C D, Cao W X, Dai T B, Yan M L, Wang Z L. Study on dynamic models and characteristics of floret primordium differentiation and degeneration in wheat. Sci Agric Sin, 1999, 32(5): 98-100.
[31] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, Witt N D, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689-2705.
doi: 10.1007/s00122-019-03382-5
[32] Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hart L, Cockram J. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor Appl Genet, 2021, 134: 1435-1454.
doi: 10.1007/s00122-021-03781-7
[33] Tang Y L, Li J, Wu Y Q, Wei H T, Li C S, Yang W Y, Chen F. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. J Integr Agric, 2011, 10: 1665-1680.
[34] Jantasuriyarat C, Vales M I, C Watson J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 108: 261-273.
pmid: 13679977
[35] 宋全昊, 刘路平, 李法计, 田芳慧, 孙道杰. 小麦穗部发育多效基因的遗传分析与基因定位. 西北植物学报, 2013, 33: 643-648.
Song Q H, Liu L P, Li F J, Tian F H, Sun D J. Genetic analysis and gene mapping of the spike development pleiotropic gene in wheat. Acta Bot Boreali-Occident Sin, 2013, 33: 643-648.
[36] Tomio T, Kenji N, Kazuko M, Tatsuro H. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2010, 120: 875-893.
doi: 10.1007/s00122-009-1218-8 pmid: 20151298
[37] Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J, 2012, 69: 168-180.
doi: 10.1111/j.1365-313X.2011.04781.x
[38] Huang L J, Hua K, Xu R, Zeng D L, Wang R C, Dong G J, Zhang G Z, Lu X L, Fang N, Wang D K, Duan P G, Zhang B L, Liu Z P, Li N, Luo Y H, Qian Q, Yao S G, Li Y H. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 2021, 33: 1212-1228.
doi: 10.1093/plcell/koab041
[39] Akiko Y, Yoshihiro O, Hidemi K, Fumio T S, Hiro Y H. ABERRANT SPIKELET and PANICLE1, encoding a TOPLESS- related transcriptional corepressor, is involved in the regulation of meristem fate in rice. Plant J, 2021, 70: 327-339.
doi: 10.1111/j.1365-313X.2011.04872.x
[40] Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018, 30: 889-906.
doi: 10.1105/tpc.17.00998
[41] Wang Q L, Sun A Z, Chen S T, Chen L S, Guo F Q. SPL6 represses signaling outputs of ER stress in control of panicle cell death in rice. Nat Plant, 2018, 4: 280-288.
doi: 10.1038/s41477-018-0131-z
[42] Zafar S A, Patil S B, Uzair M, Fang J J, Zhao J F, Guo T T, Yuan S J, Uzair M, Luo Q, Shi J X, Schreiber L, Li X Y. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol, 2020, 225: 356-375.
doi: 10.1111/nph.16133
[43] Jose F G, Behzad T, Zoe A W. Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol, 2015, 57: 876-891.
doi: 10.1111/jipb.12425
[44] Liu Z, Lin S, Shi J X, Yu J, Zhu L, Yang X J, Zhang D B, Liang W Q. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J, 2017, 91: 263-277.
doi: 10.1111/tpj.13561
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因的克隆及其在花药开裂中的潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[9] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[10] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[11] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[12] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[13] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[14] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 小麦穗和芒表面积的估测[J]. 作物学报, 1985, 11(02): 138 .
[2] 谢黎虹;杨仕华;陈能;段彬伍;朱智伟;廖西元. 不同生态条件下籼稻米饭质地和淀粉RVA谱的特性[J]. 作物学报, 2006, 32(10): 1479 -1484 .
[3] 史鸿儒;张文忠;解文孝;杨庆;张振宇;韩亚东;徐正进;陈温福. 不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J]. 作物学报, 2008, 34(11): 1985 -1993 .
[4] 邢莉萍;王华忠;蒋正宁;倪金龙;曹爱忠;于玲;陈佩度. 小麦类甜蛋白基因的转化及转基因植株的抗病性分析[J]. 作物学报, 2008, 34(03): 349 -354 .
[5] 夏九成;杨克诚;张怀渝. 控制双亲的混合选择对热带玉米群体墨白964的改良效应[J]. 作物学报, 2004, 30(10): 980 -989 .
[6] 林忠辉;莫兴国;项月琴. 作物生长模型研究综述[J]. 作物学报, 2003, 29(05): 750 -758 .
[7] 张小明, 石春海, 堀内久满, 富田桂, 鲍根良, 冯水英, 叶胜海. 粳稻穗部不同部位米粒直链淀粉含量的差异分析[J]. 作物学报, 2002, 28(01): 99 -103 .
[8] 周冬琴;朱艳;田永超;姚霞;曹卫星. 以冠层反射光谱监测水稻叶片氮积累量的研究[J]. 作物学报, 2006, 32(09): 1316 -1322 .
[9] 房栋;吕俊宏;郭旺珍;张天真. 一个新的棉花MYB类基因(GhTF1)的克隆及染色体定位分析[J]. 作物学报, 2008, 34(02): 207 -211 .
[10] 杨秀红, 吴宗璞, 张国栋. 大豆品种根系性状与地上部性状的相关性研究[J]. 作物学报, 2002, 28(01): 72 -75 .