欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2016-2027.doi: 10.3724/SP.J.1006.2022.12041

• 耕作栽培·生理生化 • 上一篇    下一篇

褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用

朱春权1,**(), 魏倩倩1,2,**(), 项兴佳2, 胡文君3, 徐青山1, 曹小闯1, 朱练峰1, 孔亚丽1, 刘佳4, 金千瑜1, 张均华1,*()   

  1. 1中国水稻研究所 / 水稻生物学国家重点实验室, 浙江杭州 310006
    2安徽大学, 安徽合肥 230039
    3浙江省农业科学院, 浙江杭州 310021
    4江西省农业科学院, 江西南昌 330200
  • 收稿日期:2021-06-16 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-28
  • 通讯作者: 张均华
  • 作者简介:朱春权, E-mail: zhuchunquan@caas.cn;
    魏倩倩, E-mail: 15955803543@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31901452);浙江省自然科学基金项目(LQ19C020007)

Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice

ZHU Chun-Quan1,**(), WEI Qian-Qian1,2,**(), XIANG Xing-Jia2, HU Wen-Jun3, XU Qing-Shan1, CAO Xiao-Chuang1, ZHU Lian-Feng1, KONG Ya-Li1, LIU Jia4, JIN Qian-Yu1, ZHANG Jun-Hua1,*()   

  1. 1State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
    2Anhui University, Hefei 230039 Anhui, China
    3Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    4Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2021-06-16 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-28
  • Contact: ZHANG Jun-Hua
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31901452);Natural Science Foundation of Zhejiang Province(LQ19C020007)

摘要:

早稻育秧过程中易遭受低温冷害, 引起水稻减产。因此, 有必要研制耐低温的水稻育秧基质来保障早稻生产。本研究以我们实验室自己研制的发酵基质作为研究对象, 外源添加褪黑素和茉莉酸甲酯后, 分别在水稻萌发阶段和水稻生长7 d后进行为期3 d的低温处理, 然后测定水稻的萌发状况、理化性质和基因表达, 从而明确2种不同激素对早稻秧苗耐低温胁迫的调控机制。结果表明, 褪黑素和茉莉酸甲酯均显著提高水稻在低温条件下的发芽率和发芽势; 两者均能提高水稻在低温条件下的生长, 包括提高株高、根长、根条数、干物重、叶龄和养分含量。在低温条件下, 褪黑素和茉莉酸甲酯均能通过调节水稻体内抗氧化系统酶的活性和降低水稻体内过氧化氢与丙二醛含量来缓解低温胁迫导致的脂质过氧化损伤。褪黑素和茉莉酸甲酯均能提高低温条件下水稻体内的脯氨酸含量和叶绿素含量, 降低脱落酸的含量, 而茉莉酸甲酯则单独提高了水稻体内GA3的含量。褪黑素和茉莉酸甲酯对水稻耐冷基因存在不同的调控作用, 在低温条件下, 两者均显著上调OsCDPK7OsLti6b, 显著下调OsWRKY45基因的表达, 褪黑素单独上调OsFer1基因的表达, 茉莉酸甲酯单独上调OsTrx23基因的表达。以上结果表明, 褪黑素和茉莉酸甲酯均能通过调控水稻体内抗氧化系统酶活、渗透物质含量、叶绿素含量、植物激素含量和耐冷基因表达提高水稻耐低温胁迫能力。

关键词: 基质, 水稻, 低温胁迫, 理化性质, 抗氧化酶, 基因表达

Abstract:

Early rice easily suffers from low temperature injury at seedling raising stage, resulting in yield reduction. Therefore, it is necessary to develop low temperature tolerant rice seedling substrate to ensure early rice production. The fermentation substrate made by ourselves was used in the present study. After melatonin and methyl jasmonate were added in the substrate, the rice was treated with low temperature for 3 days at seed germination stage and 7 days' growth stage. Then, to clarify the regulatory mechanism of these two phytohormones on the tolerance of early rice seedlings to low temperature stress, the germination status, physical and chemical properties, and gene expression of rice were explored. The results showed that both melatonin and methyl jasmonate could significantly improve the seed germination rate and germination potential of rice under low temperature. Both could improve the growth of rice, including plant height, root length, root number, dry matter weight, leaf age, and nutrient content. Under low temperature, melatonin and methyl jasmonate both reduced hydrogen peroxide and malondialdehyde content in rice by regulating the activities of antioxidant system enzymes, so as to alleviate the lipid peroxidation damage caused by low temperature stress. Melatonin and methyl jasmonate both increased the contents of proline and chlorophyll, and decreased the content of abscisic acid in rice under low temperature stress. Methyl jasmonate along increased GA3 content in rice under low temperature conditions. Melatonin and methyl jasmonate had different regulatory effects on cold tolerance genes expression in rice. Both of them significantly up-regulated the relative expression of OsCDPK7 and OsLti6b genes, and down-regulated the expression of OsWRKY45 gene in rice under low temperature conditions. In addition. The relative expression of OsFer1 gene was induced by melatonin alone, while the relative expression of OsTrx23 gene was up-regulated by methyl jasmonate alone in response to low temperature stress. The above results showed that both melatonin and methyl jasmonate could improve the low temperature stress tolerance of rice by regulating the enzyme activity of antioxidant system, osmotic substance content, chlorophyll content, plant hormone content and the expression of cold tolerance genes in rice.

Key words: substrate, rice, low temperature stress, physical and chemical properties, antioxidant enzymes, gene expression

表1

实验设计方案"

处理
Treatment
温度Temperature (℃) 时间Time (h)
白天Day 晚上Night 白天Day 晚上Night
常温N 30 20 12 12
常温+褪黑素N+T 30 20 12 12
常温+茉莉酸甲酯N+M 30 20 12 12
低温L 13 7 12 12
低温+褪黑素L+T 13 7 12 12
低温+茉莉酸甲酯L+M 13 7 12 12

表2

水稻引物序列"

基因
Gene
正向引物
Forward sequence (5'-3')
正向引物
Reverse sequence (5'-3')
OsCOLD1 CAGGATATCAAAAGCTTGGATG GCAGCTATCTTTGCTTGACG
OsLti6b GCCTTAAATTGGAGCTCAGTC GTGCAGAAGATAAACTGGAGAA
OsWRKY45 TTCCTTGTTGATGTGTCGTCTCA CCCCCAGCTCATAATCAAGAAC
OsFer1 GAGGAGACTGTGTGAAGGGC ATATTGTTCCTTATTGGCTGCC
OsCDPK7 GAGGAAATCGCTGGGTTGA TTCTCATTGTTCTTCGTCCGA
OsTrx23 AGAACACCATCGTGAAGCAC CTATCTACAAGCTTGCCAGCAT
OsHistone GGTCAACTTGTTGATTCCCCTCT AACCGCAAAATCCAAAGAACG

表3

不同处理对水稻萌发的影响"

处理
Treatment
发芽率
Germination rate (%)
发芽势
Germination potential (%)
常温N 93.25±1.22 a 67.36±2.12 a
常温+褪黑素N+T 92.78±1.38 a 69.24±1.85 a
常温+茉莉酸甲酯N+M 93.74±1.67 a 69.58±1.97 a
低温L 70.08±1.21 d 33.81±1.04 c
低温+褪黑素L+T 77.41±1.42 c 44.52±1.18 b
低温+茉莉酸甲酯L+M 84.23±1.24 b 43.98±1.26 b

表4

不同温度处理后水稻生长及质量"

处理
Treatment
株高
Plant height
(cm)
根长
Root height
(cm)
叶龄
Leaf age
(d)
地上部干重
Shoot weigh
(g 100 plant-1)
根部干重
Root weigh
(g 100 plant-1)
茎基宽
Shoot width
(cm 5 plant-1)
根条数
Number of roots
常温N 16.02±0.67 a 5.55±0.80 c 1.90±0.02 a 2.04±0.06 a 0.50±0.01 a 0.80±0.00 a 6.80±0.79 a
常温+褪黑素N+T 15.69±0.86 a 6.10±0.77 b 1.86±0.09 a 2.06±0.09 a 0.50±0.01 a 0.80±0.00 a 7.19±0.56 a
常温+茉莉酸甲酯N+M 15.88±0.91 a 7.49±0.85 a 1.90±0.00 a 2.07±0.10 a 0.51±0.01 a 0.80±0.00 a 6.55±0.69 b
低温L 7.68±0.56 c 4.69±0.68 d 1.36±0.15 c 1.40±0.06 c 0.34±0.01 c 0.80±0.00 a 5.27±0.70 d
低温+褪黑素L+T 9.38±0.92 b 6.34±0.99 b 1.71±0.16 b 1.60±0.04 b 0.43±0.01 b 0.80±0.01 a 6.50±0.51 b
低温+茉莉酸甲酯L+M 9.19±0.71 b 7.03±0.48 a 1.71±0.18 b 1.58±0.05 b 0.43±0.01 b 0.78±0.02 a 5.67±0.72 c

图1

不同处理后水稻表型(A)、体内叶绿素a (B)和叶绿素b含量(C) 处理同表1。不同小写字母表示差异达0.05显著水平。"

表5

不同温度处理后水稻植株养分含量"

处理
Treatment
地上部氮含量
Shoot N content (g kg-1)
地上部磷含量
Shoot P content (g kg-1)
地上部钾含量
Shoot K content (g kg-1)
常温N 30.70±2.26 ab 7.24±0.09 a 50.82±1.25 b
常温+褪黑素N+T 30.41±1.86 ab 7.44±0.30 a 49.82±0.50 b
常温+茉莉酸甲酯N+M 32.09±1.08 a 7.34±0.28 a 55.33±1.42 a
低温L 27.35±0.28 c 5.29±0.12 d 41.91±1.22 d
低温+褪黑素L+T 28.12±0.31 c 6.25±0.21 b 45.24±1.38 c
低温+茉莉酸甲酯L+M 32.50±0.54 a 5.75±0.14 c 48.46±2.33 b

表6

不同温度处理后水稻体内抗氧化酶活性"

处理
Treatment
超氧化物歧化酶
SOD
(U g-1 FW)
过氧化物酶
POD
(U g-1 FW)
过氧化氢酶
CAT
(nmol min-1 g-1 FW)
谷胱甘肽转移酶
GST
(nmol min-1 g-1 FW)
抗坏血酸过氧化物酶
APX
(μmol min-1 g-1 FW)
常温N 19.82±0.56 e 5782.16±254.16 d 66.26±2.89 d 66.26±1.29 d 0.13±0.01 d
常温+褪黑素N+T 21.40±0.33 d 6446.11±346.21 c 69.46±2.47 d 73.50±2.04 c 0.26±0.02 c
常温+茉莉酸甲酯N+M 21.37±0.49 d 6370.06±155.78 c 106.12±5.44 c 80.80±2.67 b 0.34±0.01 b
低温L 22.58±0.34 c 7122.18±264.79 b 154.32±10.10 b 79.54±5.09 b 0.23±0.02 c
低温+褪黑素L+T 23.44±0.39 b 8713.56±405.39 a 161.34±6.72 b 94.29±3.06 a 0.32±0.01 b
低温+茉莉酸甲酯L+M 24.51±0.41 a 9094.56±322.81 a 212.56±14.71 a 97.89±2.20 a 0.42±0.01 a

表7

不同温度处理后水稻体内丙二醛和过氧化氢含量"

处理
Treatment
丙二醛含量
MDA content (nmol g-1 FW)
过氧化氢含量
H2O2 content (μmol g-1 FW)
常温N 7.45±0.31 c 9.89±0.69 c
常温+褪黑素N+T 6.66±0.07 d 10.14±0.74 c
常温+茉莉酸甲酯N+M 6.25±0.31 d 9.92±0.08 c
低温L 22.85±2.72 a 15.84±0.85 a
低温+褪黑素L+T 15.19±0.50 b 12.26±0.56 b
低温+茉莉酸甲酯L+M 15.88±1.21 b 9.68±0.65 c

图2

不同处理后水稻体内脯氨酸含量(A)、可溶性蛋白含量(B)、脱落酸含量(C)和GA3含量(D) 处理同表1。不同小写字母表示差异达0.05显著水平。"

图3

不同处理下水稻体内基因表达 处理同表1。不同小写字母表示差异达0.05显著水平。"

[1] 刘勇, 张忠波, 刘雪. 低温对水稻产量的影响及防御措施. 中国新技术新产品, 2009, (12): 210.
Liu Y, Zhang Z B, Liu X. Effect of low temperature on rice yield and defense measurements. China New Tech New Prod, 2009, (12): 210. (in Chinese)
[2] 李海波, 侯守贵, 于广星, 王友芬, 陈盈, 王宁, 赵琦, 付亮, 张红艳, 邢亚南. 孕穗抽穗期低温对水稻植株、产量性状及脯氨酸含量的影响. 中国农学通报, 2011, 27(1): 63-68.
Li H B, Hou S G, Yu G X, Wang Y F, Chen Y, Wang N, Zhao Q, Fu L, Zhang H Y, Xing Y N. Effects of low temperature stresses on the characters of plant, yield and the proline contents in rice leaves at booting and heading stages. Chin Agic Sci Bull, 2011, 27(1): 63-68. (in Chinese with English abstract)
[3] 程式华. 2020年中国水稻产业发展报告. 北京: 中国农业科学技术出版社, 2020. p 173.
Cheng S H. China Rice Industry Development Report in 2020. Beijing: China Agricultural Science and Technology Press, 2020. p 173. (in Chinese)
[4] Tan D X, Hardeland R, Manchester L C. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot, 2012, 63: 577-597.
doi: 10.1093/jxb/err256
[5] Arnao M B, Hernández-Ruiz J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res, 2012, 46: 58-63.
doi: 10.1111/j.1600-079X.2008.00625.x
[6] Lobell D B, Sibley A, Ortiz-Monasterio J I. Extreme heat effects on wheat senescence in India. Nat Clim Change, 2012, 2: 186-189.
doi: 10.1038/nclimate1356
[7] Posmyk M M, Kuran H, Marciniak K, Janas K M. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res, 2008, 45: 24-31.
doi: 10.1111/j.1600-079X.2007.00552.x
[8] Schilmiller A L, Koo A J, Howe G A. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol, 2007, 143: 812-824.
pmid: 17172287
[9] Wang Y, Xu H, Liu W, Nan W, Qu C, Jiang S, Fang H, Zhang Z, Chen X. Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway. Plant Cell, 2018, 136: 75-84.
[10] Tian B H, Zhang Y J, Jin Z P, Liu Z Q, Pei Y X. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Front Biosci, 2017, 22: 530-538.
doi: 10.2741/4500
[11] 刘华招. 水稻机插中苗育秧基质的研究. 现代化农业, 2009, (3): 1-3.
Liu H Z. Study on the substrate of rice seedling in mechanical transplanting. Mod Agric, 2009, (3): 1-3. (in Chinese)
[12] 毛羽, 张无敌. 无土栽培基质的研究进展. 农业与技术, 2001, 24(3): 83-88.
Mao Y, Zhang W D. Prospects of reseachers on soilless culture substrates. Agric Tech, 2001, 24(3): 83-88. (in Chinese with English abstract)
[13] 程晓娟, 罗春华, 支庚银, 姚海华, 王艳丽. 东北寒地粳稻烨霖无土基质育秧效果试验. 中国稻米, 2015, 21(4): 147-149.
Cheng X J, Luo C H, Zhi G Y, Yao H H, Wang Y L. Effects of yelin soilless substrate on seedling raising of japonica rice variety in cold region of northeast China. China Rice, 2015, 21(4): 147-149. (in Chinese with English abstract)
[14] 朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响. 中国水稻科学, 2021, 35: 503-512.
Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of substrates with different properties on chilling tolerance of early rice seedlings. Chin J Rice Sci, 2021, 35: 503-512. (in Chinese with English abstract)
[15] 毕辛华, 戴心维. 种子学. 北京: 农业出版社, 1993. pp 60-61.
Bi X H, Dai X W. Seed Science. Beijing: Agriculture Press, 1993. pp 60-61. (in Chinese)
[16] 林育炯, 张均华, 胡继杰, 朱练峰, 曹小闯, 禹盛苗, 金千瑜. 不同类型基质对机插水稻秧苗生理特征及产量的影响. 农业工程学报, 2016, 32(8): 18-26.
Lin Y J, Zhang J H, Hu J J, Zhu L F, Cao X C, Yu S M, Jin Q Y. Effects of different seedling substrates on physiological characters and grain yield of mechanized-transplanted rice. Trans CSAE, 2016, 32(8): 18-26. (in Chinese with English abstract)
[17] 鲁如坤. 土壤农业化学分析方法. 南京: 河海大学出版社, 2000. pp 308-315.
Lu R K. Methods of Soil Agricultural Chemical Analysis. Nanjing: Hehai University Press, 2000. pp 308-315. (in Chinese)
[18] 顾骏飞, 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016, 42: 551-560.
doi: 10.3724/SP.J.1006.2016.00551
Gu J F, Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Yang J C. Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice. Acta Agron Sin, 2016, 42: 551-560. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00551
[19] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880.
[20] Wang H H, Hou J J, Li Y, Zhang Y Y, Huang J J, Liang W H. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil, 2017, 416: 39-52.
doi: 10.1007/s11104-017-3197-x
[21] 周燮, 郑志富, 陈溥言, 章迪. 专一识别脱落酸甲酯的单克降抗体的制备与应用. 植物生理学报, 1969, 22(3): 284-290.
Zhou X, Zheng Z F, Chen B Y, Zhang D. Preparation and application of monoclonal antibodies specific for abscisic acid methyl ester. Physiol Mol Biol Plants, 1969, 22(3): 284-290. (in Chinese with English abstract)
[22] 郑志富, 周燮. 识别未衍生化的13-羟化Gas及其葡萄糖苷的单克隆抗体. 植物学报, 1995, 37: 761-769.
Zheng Z F, Zhou X. A monoclonal antibody recognizing nonderivative 13-hydoxy gibberellins and their glucosides. Acta Bot Sin, 1995, 37: 761-769. (in Chinese with English abstract)
[23] 余保生, 王万福, 谢保忠. 极端温度对水稻生产的影响. 现代农业科技, 2010, (24): 92.
Yu B S, Wang W F, Xie B Z. Effect of extreme temperature on rice production. Mod Agric Sci Tech, 2010, (24): 92.
[24] 段小华, 邓泽元, 宾金华. 茉莉酸甲酯对水稻幼苗抗冷性的影响. 植物生理学通讯, 2009, 45: 881-884.
Duan X H, Deng Z Y, Bin J H. Effects of methyl jasmonate on cold resistance of rice (Oryza sativa L.) seedling. Plant Physiol J, 2009, 45: 881-884. (in Chinese with English abstract)
[25] 王蕾. 茉莉酸甲酯和冠菌素对黄瓜幼苗抗冷性的影响. 中国农业大学硕士学位论文,北京, 2006.
Wang L. Effects of Methyl Jasmonate and Coronatine on Chilling Tolerance of Cucumber (Cucumis sativus L.) Seedling. MS Thesis of China Agricultural University, Beijing, China, 2006. (in Chinese with English abstract)
[26] 于奇, 曹亮, 金喜军, 邹京南, 王孟雪, 张明聪, 任春元, 张玉先. 低温胁迫下褪黑素对大豆种子萌发的影响. 大豆科学, 2019, 38: 56-62.
Yu Q, Cao L, Jin X J, Zou J N, Wang M X, Zhang M C, Ren C Y, Zhang Y X. Effects of melatonin on seed germination of soybean under low temperature stress. Soybean Sci, 2019, 38: 56-62. (in Chinese with English abstract)
[27] 董倩. N-乙酰-L-半胱氨酸、褪黑素引发对低温胁迫下杂交水稻种子萌发和幼苗生长及基因表达的影响. 浙江大学硕士学位论文,浙江杭州, 2020.
Dong Q. Effects of Seed Priming by N-acetyl-L-cysteine and Melatonin on Seed Germination, Seedling Growth and Gene Expression of Hybrid Rice under Low Temperature. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract)
[28] 尉欣荣, 张智伟, 周雨, 刘鹏, 姚宏斌, 苗彦军, 付娟娟. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用. 草地学报, 2020, 28(5): 169-177.
Wei X R, Zhang Z W, Zhou Y, Liu P, Yao H B, Miao Y J, Fu J J. Effects of melatonin on growth and antioxidant system of perennial ryegrass seedlings under cold and drought stresses. Acta Agrestia Sin, 2020, 28(5): 169-177. (in Chinese with English abstract)
[29] 王国莉, 郭振飞. 低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响. 中国水稻科学, 2005, 19: 381-383.
Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity. Chin J Rice Sci, 2005, 19: 381-383. (in Chinese with English abstract)
[30] Ki-Hong J, Junghe H, Choong-Hwan R, Youngju C, Yong-Yoon C, Akio M, Hirohiko H, An G. Characterization of a rice chlorophyll-deficient mutant using the t-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472.
pmid: 12773632
[31] 张嘉雯, 卢绍浩, 赵喆, 赵铭钦. 外源褪黑素对低温胁迫下烟草幼苗生理指标的影响. 中国农业科技导报, 2020, 22(9): 78-86.
Zhang J W, Lu S H, Zhao Z, Zhao M Q. Influences of exogenous melatonin on physiological properties of tobacco seedlings under low temperature stress. J Agric Sci Tech, 2020, 22(9): 78-86. (in Chinese with English abstract)
[32] Salah M. 引发和冷等离子体处理通过生理、分子及代谢调控提高水稻种子的抗逆性. 浙江大学博士学位论文,浙江杭州, 2017.
Salah M. Physiological, Molecular and Metabolic Effects of Priming and Cold Plasma Treatment on Rice Seeds to Improve Resistance to Different Abiotic Stresses. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2017. (in Chinese with English abstract)
[33] 罗立津, 徐福乐, 翁华钦, 洪淑珠, 段留生, 李召虎. 脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究. 西北植物学报, 2011, 31: 94-100.
Luo L J, Xu F L, Wong H Q, Hong S Z, Duan L S, Li Z H. Inducing effects and its biological mechanisms of ABA on the chilling resistance of sweet pepper seedlings. Acta Bot Boreali-Occid Sin, 2011, 31: 94-100. (in Chinese with English abstract)
[34] 郭栋梁, 王静杰, 万小荣, 李玲. 外源脱落酸抑制花生种子发芽的生理机制. 植物生理学报, 2008, 44: 936-938.
Guo D L, Wang J J, Wan X R, Li L. Physiological mechanism of the suppression of peanut seed germination by exogenous ABA. Plant Physiol J, 2008, 44: 936-938. (in Chinese with English abstract)
[35] Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2017, 138: 36-45.
doi: 10.1016/j.envexpbot.2017.02.012
[36] Zhang H J, Zhang N, Yang R C, Wang L, Sun Q Q, Li D B, Cao Y Y, Weeda S, Zhao B, Ren S. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res, 2014, 57: 269-279.
doi: 10.1111/jpi.12167
[37] 庄维兵, 刘天宇, 束小春, 渠慎春, 王涛, 张凤娇, 王忠. 褪黑素在植物生长发育过程中与植物激素的关系. 安徽农业科学, 2018, 46(31): 18-22.
Zhuang W B, Liu T Y, Shu X C, Qu S C, Wang T, Zhang F J, Wang Z. Relationship between melatonin and plant hormones during plant growth and development. J Anhui Agric Sci, 2018, 46(31): 18-22. (in Chinese with English abstract)
[38] 黄涛, 陈大洲, 夏凯, 周燮. 抗冷与不抗冷水稻在低温期间叶片ABA与GA1水平变化的差异. 华北农学报, 1998, 13(4): 56-60.
Huang T, Chen D Z, Xia K, Zhou X. Differential response of ABA and GA1 levels between chilling-resistant and chilling- sensitive varieties of rice during chilling stress. Acta Agric Boreali-Sin, 1998, 13(4): 56-60. (in Chinese with English abstract)
[39] Murata N, Los D A. Membrane fluidity and temperature perception. Plant Physiol, 1997, 115: 875-879.
pmid: 12223851
[40] 祝涛, 杨美英. 低温处理对不同品种水稻苗期保护酶活性的影响. 吉林农业, 2010, (7): 95.
Zhu T, Yang M Y. Effects of low temperature treatment on activities of protective enzymes in different rice varieties at seedling stage. Agric Jilin, 2010, (7): 95. (in Chinese)
[41] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1-15.
[42] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 6: 1209-1221.
[43] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23: 319-327.
pmid: 10929125
[44] Tian Y, Zhang H W, Pan X W, Chen Z J, Zhang Z J, Lu X Y, Huang R F. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Trans Res, 2011, 20: 857-866.
doi: 10.1007/s11248-010-9463-9
[45] Morsy M R, Almutairi A M, Gibbons J, Yun S J, Benildo G. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene, 2005, 344: 171-180.
doi: 10.1016/j.gene.2004.09.033
[46] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxinh of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett, 2009, 583: 2734-2738.
doi: 10.1016/j.febslet.2009.07.057
[47] Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863-4874.
doi: 10.1093/jxb/err144
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[6] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[7] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[8] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[9] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[10] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[11] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[12] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[15] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .