作物学报 ›› 2023, Vol. 49 ›› Issue (1): 36-45.doi: 10.3724/SP.J.1006.2023.24006
濮雪1(), 王凯彤1, 张宁1,2,*(), 司怀军1,2
PU Xue1(), WANG Kai-Tong1, ZHANG Ning1,2,*(), SI Huai-Jun1,2
摘要:
MAPKKs是促丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)级联反应主要成员之一, 位于该级联反应通路中间, 对信号传递起着收集和发散的关键作用。有研究表明马铃薯StMAPKK4基因响应干旱胁迫, 为进一步探究该基因的生物学功能, 本研究对StMAPKK4基因进行了生物信息学分析。结果表明, StMAPKK4与科民茄亲缘关系最近。其含有蛋白激酶家族的Protein kinase domain (PF00069)结构域, 位置定位于64~302 aa之间。StMAPKK4含有多个激素(茉莉酸甲酯、乙烯、脱落酸、ABA)及胁迫相关响应元件。qRT-PCR分析结果表明, StMAPKK4基因在马铃薯茎中表达量最高, 且在干旱及盐处理下均上调表达。亚细胞定位表明该基因定位于细胞膜上。利用酵母双杂交方法筛选出8个与StMAPKK4相互作用的蛋白, 并通过回转试验验证了其互作的真实性。对互作蛋白进行Blast比对结果显示, StMAPKK4与多酚氧化酶、藻蓝蛋白、天冬氨酸转氨酶、渗透素、磷酸盐转运蛋白等多种蛋白互作, 初步判断StMAPKK4可能参与光合作用响应机制、植物体低温、干旱及盐胁迫等一系列非生物胁迫、促进根系对磷元素的吸收等生理生化过程。
[1] |
Eiasu B K, Soundy P, Hammes P S. Response of potato (Solarium tuberosum) tuber yield components to gel-polymer soil amendments and irrigation regimes. New Zealand J Crop Hortic Sci, 2007, 35: 25-31.
doi: 10.1080/01140670709510164 |
[2] | 邓文红, 沈应柏, 陈华君, 李镇宇, 蒋湘宁. 昆虫取食和药剂熏蒸对马尾松针叶脱落酸和茉莉酸含量的影响. 应用生态学报, 2009, 20: 1166-1170. |
Deng W H, Shen Y B, Chen H J, Li Z Y, Jiang X N. Effects of insect feeding and fumigation on abscisic acid and jasmonic acid contents in Pinus massoniana needles. Chin J Appl Ecol, 2009, 20: 1166-1170. (in Chinese with English abstract) | |
[3] |
蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034 |
Meng J Y, Liang G W, He Y J, Qian W. QTL analysis of salt and drought tolerance traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034 |
|
[4] |
秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47: 780-786.
doi: 10.3724/SP.J.1006.2021.04122 |
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and its response to drought stress in potato. Acta Agron Sin, 2021, 47: 780-786. (in Chinese with English abstract) | |
[5] |
冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析. 作物学报, 2022, 48: 896-907.
doi: 10.3724/SP.J.1006.2022.14036 |
Feng Y, Zhu X, Luo H Y, Li S G, Zhang N, Si H J. Functional analysis of StMAPK4 in response to low temperature stress in potato. Acta Agron Sin, 2022, 48: 896-907. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14036 |
|
[6] |
Ichimura K, Shinozaki K, Tena G. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-808.
pmid: 12119167 |
[7] |
Jonak C, Ökrész L, Bögre L. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol, 2002, 5: 415-424.
pmid: 12183180 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217-26.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Rohila J S, Yang Y. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49: 751-759.
doi: 10.1111/j.1744-7909.2007.00501.x |
[10] |
Rao K P, Richa T, Kumar K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 2010, 17: 139-153.
doi: 10.1093/dnares/dsq011 pmid: 20395279 |
[11] |
Wankhede D P, Misra M, Singh P. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One, 2013, 8: e65011.
doi: 10.1371/journal.pone.0065011 |
[12] |
Kong X P, Pan J W, Zhang D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 2013, 441: 964-969.
doi: 10.1016/j.bbrc.2013.11.008 |
[13] |
Liu Y, Zhang D, Wang L. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 31: 1446-1460.
doi: 10.1007/s11105-013-0623-y |
[14] |
Wu J, Wang J, Pan C. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS One, 2014, 9: e103032.
doi: 10.1371/journal.pone.0103032 |
[15] |
Wang J, Wang Y, Ye L. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics, 2015, 16: 386.
doi: 10.1186/s12864-015-1621-2 pmid: 25976104 |
[16] |
Suarez-Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529 |
[17] |
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002 |
[18] |
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109 |
[19] |
Asai T, Tena G, Plotnikova J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.
doi: 10.1038/415977a |
[20] |
Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 2011, 157: 804-814.
doi: 10.1104/pp.111.174003 pmid: 21803860 |
[21] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 |
[22] |
Hua Z M, Yang X C, Fromm M E. Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. Plant Cell Environ, 2006, 29: 1761-1770.
doi: 10.1111/j.1365-3040.2006.01552.x |
[23] |
Gu L, Liu Y, Zong X. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep, 2010, 37: 4067-4073.
doi: 10.1007/s11033-010-0066-6 |
[24] |
Xu H, Li K, Yang F. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep, 2010, 37: 3157-3163.
doi: 10.1007/s11033-009-9895-6 |
[25] |
Zhang L, Xi D, Li S. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol, 2011, 77: 17-31.
doi: 10.1007/s11103-011-9788-7 |
[26] | 刘雪. 马铃薯MAPKK基因鉴定及其抗旱相关功能基因筛选. 甘肃农业大学硕士学位论文, 甘肃兰州, 2017. |
Liu X. Identification of MAPKK Gene and Screening of Drought Resistance Related Functional Genes in Potato. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2017. (in Chinese with English abstract) | |
[27] | 廖钰秋. 马铃薯StMAPKK1互作蛋白筛选及其互作蛋白基因功能解析. 甘肃农业大学硕士学位论文, 甘肃兰州, 2020. |
Liao Y Q. Screening and Functional Analysis of Potato StMAPKK1 Interacting Protein Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2020 (in Chinese with English abstract). | |
[28] | 王国瑞, 袁珍, 张鹏钰, 仇晓, 刘志学, 王同朝, 卫丽. 玉米ZmPP2C3基因的表达及互作蛋白分析. 农业生物技术学报, 2020, 28: 389-398. |
Wang G R, Yuan Z, Zhang P Y, Qiu X, Liu Z X, Wang T C, Wei L. Expression and interaction protein analysis of ZmPP2C3 gene in maize. J Agric Biotechnol, 2020, 28: 389-398. (in Chinese with English abstract) | |
[29] |
Cai G, Wang G, Wang L. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. Plant Physiol, 2014, 171: 1003-1016.
doi: 10.1016/j.jplph.2014.02.012 |
[30] |
Li Y Y, Cai H X, Liu P. Arabidopsis MAPKKK18 positively regulates drought stress resistance via down-stream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292-297.
doi: 10.1016/j.bbrc.2017.01.104 |
[31] |
Ma H, Chen J, Zhang Z. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
doi: 10.1111/tpj.13674 |
[32] |
Fields S, Song O. A novel genetic system to detect protein- protein interactions. Nature, 1989, 340: 245-246.
doi: 10.1038/340245a0 |
[33] | 房宸曦, 车妍, 廖钰秋, 王一凡, 张宁, 司怀军. 酵母双杂交系统筛选马铃薯StLURP1基因的互作蛋白. 农业生物技术学报, 2019, 27: 972-981. |
Fang C X, Che Y, Liao Y Q, Wang Y F, Zhang N, Si H J. Screening of potato StLURP1 gene interaction protein by yeast two-hybrid system. J Agric Biotechnol, 2019, 27: 972-981. (in Chinese with English abstract) | |
[34] | 陈明俊. 应用基因编辑技术抑制马铃薯多酚氧化酶的研究. 贵州大学硕士学位论文, 贵州贵阳, 2018. |
Chen M J. Inhibition of Polyphenol Oxidase in Potato by Gene Editing. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2018. (in Chinese with English abstract) | |
[35] | 张海星. 丹参多酚氧化酶互作蛋白的筛选与验证. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019. |
Zhang H X. Screening and Validation of Salvia miltiorrhiza Polyphenol Oxidase Interacting Proteins. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract) | |
[36] |
Kupchak B R, Villa N Y, Kulemina L V. Dissecting the regulation of yeast genes by the osmotin receptor. Biochem Biophys Res Commun, 2008, 374: 210-213.
doi: 10.1016/j.bbrc.2008.07.002 |
[37] |
D’Angeli S, Altamura M M. Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta, 2007, 225: 1147-1163.
pmid: 17086398 |
[38] |
Jami S K, Swathi A T, Guruprasad L. Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol, 2007, 164: 238-252.
doi: 10.1016/j.jplph.2006.01.006 |
[39] |
Yun D J, Ibeas J I, Lee H. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell, 1998, 1: 807-817.
pmid: 9660964 |
[40] |
Lee H, Damsz B, Woloshuk C P. Use of the plant defense protein osmotin to identify Fusarium oxysporum genes that control cell wall properties. Eukaryotic Cell, 2010, 9: 558-568.
doi: 10.1128/EC.00316-09 |
[41] |
Evers D, Overney S, Simon P. Salt tolerance of Solanum tuberosum L., overexpressing a heterologous osmotin-like protein. Biol Planta, 1999, 42: 105-112.
doi: 10.1023/A:1002131812340 |
[42] |
Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601-2613.
doi: 10.3390/ijms9122601 pmid: 19330095 |
[43] | Zhang C, Meng S, Li M. Genomic identification and expression analysis of the phophate transporter gene family in popar. Front Plant Sci, 2016, 7: 1398-1412. |
[44] |
Lhamo D, Shao Q, Tang R. Genome-wide analysis of the five phosphate transporter families in Camelina sativa and their expressions in response to low-P. Int J Mol Sci, 2020, 21: 8365.
doi: 10.3390/ijms21218365 |
[45] | 王晓丹. 甜菜磷酸盐转运蛋白基因的克隆及表达分析. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2021. |
Wang X D. Cloning and Expression Analysis of Phosphate Transporter Gene in Sugar Beet. MS Thesis of Heilongjiang University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract) |
[1] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[2] | 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284. |
[3] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[4] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[5] | 杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析[J]. 作物学报, 2022, 48(7): 1614-1624. |
[6] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[7] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[8] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[9] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[10] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[11] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[12] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[13] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
|