欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2766-2776.doi: 10.3724/SP.J.1006.2023.34004

• 耕作栽培·生理生化 • 上一篇    下一篇

不同生态区高粱籽粒产量和品质对氮肥施用的响应

刘秋霞(), 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕()   

  1. 山西农业大学资源环境学院, 山西太原 030031
  • 收稿日期:2023-01-05 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-24
  • 通讯作者: 焦晓燕, E-mail: xiaoyan_jiao@126.com
  • 作者简介:E-mail: liuqiuxia333@163.com
  • 基金资助:
    省部共建有机旱作农业重点实验室(筹)项目(202001-8);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A20);山西农业大学科研专项(2020xshf18)

Response of sorghum grain yield and quality to nitrogen application in different ecozones

LIU Qiu-Xia(), DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2023-01-05 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-24
  • Contact: E-mail: xiaoyan_jiao@126.com
  • Supported by:
    State Key Laboratory of Sustainable Dryland Agriculture (in preparation)(202001-8);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20);Special Research Project of Shanxi Agriculture University(2020xshf18)

摘要:

研究不同生态区高粱产量和品质对氮肥施用的响应, 分析生态区影响高粱产量形成机制, 对高粱产区优化和促进高粱产业发展具有重要意义。本研究以11个高粱品种为研究材料, 于2020和2021年在山西朔州和晋中开展田间试验, 研究2个生态区高粱抽穗期和收获期的干物质量和氮素积累量、籽粒产量和产量构成以及籽粒品质对氮的响应, 分析高粱籽粒产量形成与物质积累的关系。结果表明: 除2021年不施氮(即连续2年不施氮)处理外, 其他处理朔州试验点高粱产量高于晋中, 施氮和不施氮处理平均增产幅度分别为8.6%~26.7%和13.8%。氮肥施用降低千粒重, 但提高了高粱穗粒数, 穗粒数对产量的相对贡献率达97%; 同一施氮条件下朔州试验点穗粒数显著高于晋中。整体来看2个试验点抽穗期干物质和氮素积累量分别高达收获期的51.93%和68.86%, 且抽穗期干物质量和氮素积累量与籽粒产量均呈显著的一元二次回归关系, 表明提高抽穗期干物质积累对高粱产量形成至关重要; 而不施氮时, 抽穗后干物质量形成也显著影响籽粒产量。与晋中试验点相比, 朔州试验点抽穗期干物质和氮素积累量分别增加40.17%~61.47%和15.72%~47.03%, 而抽穗后干物质和氮素积累量小于晋中试验点, 这说明朔州试验点较高产量的形成与抽穗期干物质和氮素积累量密切相关。此外, 除连续2年不施氮处理外, 朔州试验点高粱籽粒淀粉和单宁含量高于晋中试验点, 但蛋白质含量相对较低。昼夜温差不同可能是导致2个生态区产量品质差异的重要原因。综上可知, 朔州冷凉区高粱产量显著高于晋中温暖半湿润区, 提高高粱抽穗前干物质和氮素积累量对籽粒产量形成十分关键, 冷凉区较大的昼夜温差有利于抽穗前干物质和氮素积累, 促进籽粒产量提高。

关键词: 高粱, 生态区, 产量, 干物质, 氮素积累

Abstract:

Identifying the response of sorghum grain yield and quality to nitrogen application in different ecozones can enhance the understanding of the yield formation process, help improve sorghum productivity, and promote the development of the sorghum industry. This experiment was conducted in Shuozhou and Jinzhong of Shanxi province in 2020 and 2021 in the field. Both no nitrogen and nitrogen fertilizer application were included, with 11 sorghum varieties in each nitrogen application plot. The dry matter and nitrogen accumulation both at heading and harvest stages, grain yield and its components, and grain quality were investigated. The relationships between grain yield and biomass at heading and harvest stages were also studied, respectively. Results showed that the average sorghum grain yield in Shuozhuo was greater than that in Jinzhong, except for the no nitrogen treatment in 2021 (i.e. no nitrogen applied for two consecutive years). Compared with the yield in Jinzhong experimental sites, grain yield in Shuozhou increased by 8.6%-26.7% when nitrogen was applied in 2020 and 2021, and 13.8% without nitrogen application in 2020, respectively. Nitrogen application decreased 1000-grain weight but improved significantly grains per particle. Grains per particle exerted great influence on grain yield, and contributed 97% to the yield variation. The grains per particle in Shuozhou was higher than in Jinzhong for the same nitrogen treatment. For both experimental sites, dry matter and nitrogen accumulation at heading stage occupied 51.93% and 68.86% of that at harvest stage, respectively. Substrate accumulation at heading stage had significant quadratic regression relationships with sorghum grain yield. This suggested that it was important to improve dry matter and nitrogen accumulation at heading stage for higher sorghum grain yield. Meanwhile, when nitrogen was withdrawn, the grain yield was more closely correlated with dry matter accumulation after heading stage. Compared with Jinzhong experimental site, the dry matter and nitrogen accumulation at heading stage increased by 40.17%-61.47% and 15.72%-47.03% in Shuozhou, respectively. But the regression relationships between their accumulations, from heading to mature stage, and grain yield of Shuozhou were relative low. The enhanced grain yield in Shuozhou, compared with that in Jinzhong, was closely correlated with the improved accumulations of dry matter and nitrogen at heading stage. The contents of both starch and tannin were also higher in Shuozhou, and protein was lower relative to Jinzhong, except for the treatment of no nitrogen applied for two consecutive years. The large daily temperature difference of Shuozhou might accountfor its promoted yield and quality. The variation in terms of grain yield and quality between two ecozones was resulted from difference diurnal temperature range. Obviously, sorghum grain yield in high latitude and cold area (Shuozhou) was higher than that in warm sub-humid area (Jinzhong). Promoted dry matter and nitrogen accumulation before heading was crucial to achieve high sorghum yield. The larger temperature difference between day and night in high latitude and cold area was conducive to substrate accumulation before heading and improve grain yield.

Key words: sorghum, ecological zone, yield, dry matter, nitrogen accumulation

图1

高粱生育期日降水量、温度和昼夜温差 A~D分别为朔州和晋中2020年和2021年生育期降水量、日最高气温、日最低气温和日平均气温; E和F分别为朔州(黑色框)和晋中(浅灰色框)2020年和2021年昼夜温差。"

表1

试验点0~20 cm土壤理化性质"

试验点
Experimental site
土壤
Soil
土壤质地
Soil texture
EC
(μS cm-1)
pH 全氮
Total nitrogen
(g kg-1)
有机质
Soil
organic matter
(g kg-1)
有效磷
Soil available P
(mg kg-1)
速效钾
Soil
available K
(mg kg-1)
0-20 cm硝态氮
NO3-N of 0-20 cm
(mg kg-1)
20-40 cm硝态氮
NO3-N of 20-40 cm
(mg kg-1)
朔州
Shuozhou
2020基础土壤
2020 Basic soil
沙壤土
Sandy loam
138.96 8.30 0.53 11.37 6.88 86.79 11.25 12.72
2021不施氮土壤
2021 -N soil
0.56 10.20 7.40 71.19 6.30 5.98
2021施氮土壤
2021 +N soil
0.68 11.40 7.34 87.88 8.14 8.53
晋中
Jinzhong
2020基础土壤
2020 Basic soil
粉沙质壤土
Silty sandy loam
203.86 8.59 0.91 17.48 9.38 118.63 17.86 8.08
2021不施氮土壤
2021 -N soil
0.98 17.45 9.27 115.04 12.06 7.43
2021施氮土壤
2021 +N soil
0.97 19.69 9.25 119.88 15.20 10.14

图2

生态区和氮对高粱产量、收获指数及产量构成的影响 A~D分别为各处理产量、收获指数、千粒重和穗粒数; E为高粱产量构成因子对籽粒产量的相对贡献; F为朔州与晋中产量对比图。不同小写字母表示同一年份各试验点和处理间差异显著(P < 0.05)。"

表2

产量、产量构成、干物质和氮素积累及高粱品质方差分析"

变异来源
Source of variation
产量
Yield
千粒重
1000-grainweight
穗粒数
Grain per panicle
抽穗期干物质量
Dry matter at heading
抽穗后干物质量
Dry matter after heading stage
收获期生物量
Dry matter at harvest
抽穗期氮素积量
N accumulation at heading
抽穗后氮素积量
N accumulation after heading
收获期氮素积量
N accumulation at harvest
淀粉含量Starch content 蛋白质含量Protein content 单宁含量Tannin content
生态区Ecological zone (E) ** ** ** ** ** ** ** ** ** ns ** **
氮Nitrogen (N) ** ** ** ** ** ** ** ** ** ** ** ns
年际Year (Y) ** ** ** ** ** ** ** ** ** ** ns ns
品种Variety (V) ** ** ** ** ** ** ** ** ** ** ** **
生态区×氮E×N ** ns * ** ** ** ** ** ** ** ** *
生态区×年际E×Y ** ** ** ** ** ** ** ** ** ** ** **
生态区×品种E×V ** ** ** ** ** ** ** ** ** ** ** **
氮×年际N×Y ** ** ** ** ** ** ** ** ** ** ** ns
氮×品种N×V ** ** ** ** ** ** ** ** ** ** ** **
年际×品种Y×V ** ** ** ** ** ** ** ** ** ** ** **
生态区×氮×年际E×N×Y ** * ** ** ** ** ** ** ** ** ** ns
生态区×氮×品种E×N×V ** ** ** ** ** ** ** ** ** ** * *
生态区×年际×品种E×Y×V ** ** ** ** ** ** ** ** ** ** ** **
氮×年际×品种N×Y×V ** * ** ** ** ** ** ** ** ** ** ns
生态区×氮×年际×品种E×N×Y×V ** ns ** ** ** ** ** ** ** ** ** *

图3

不同生态区和氮肥施用对高粱抽穗期和收获期干物质及氮素积累量的影响 不同小写字母表示同一年份各试验点和处理间差异显著(P < 0.05)。"

图4

朔州和晋中抽穗前后干物质及氮素积累量比较"

图5

高粱抽穗期及抽穗后干物质和氮素积累量与产量的关系"

图6

不同生态区和氮肥施用对高粱籽粒蛋白质、淀粉和单宁含量的影响 不同小写字母表示同一年份各试验点和处理间差异显著(P < 0.05)。"

[1] Khoddami A, Messina V, Venkata K V, Farahnaky A, Blanchard C L, Roberts T H. Sorghum in foods: functionality and potential in innovative products. Crit Rev Food Sci, 2023, 63: 1170-1186.
doi: 10.1080/10408398.2021.1960793
[2] Wagaw K. Review on mechanisms of drought tolerance in sorghum (Sorghum bicolor (L.) Moench) basis and breeding methods. Acad Res J Agric Sci Res, 2019, 7: 87-99.
[3] Hadebe S T, Modi A T, Mabhaudhi T. Drought tolerance and water use of cereal crops: a focus on sorghum as a food security crop in Sub-Saharan Africa. J Agron Crop Sci, 2017, 203: 177-191.
doi: 10.1111/jac.2017.203.issue-3
[4] Moore J W, Ditmore M, Tebeest D O. The effects of cropping history on grain sorghum yields and anthracnose severity in Arkansas. Crop Prot, 2009, 28: 737-743.
doi: 10.1016/j.cropro.2009.04.008
[5] 卢庆善, 邹剑秋, 朱凯, 张志鹏. 试论我国高粱产业发展: 论全国高粱生产优势区. 杂粮作物, 2009, 29(2): 78-80.
Lu Q S, Zou J Q, Zhu K, Zhang Z P. Discussion of the development of Chinese sorghum industry: on the dominant areas of sorghum production. Rain Fed Crops, 2009, 29(2): 78-80. (in Chinese)
[6] Gerik T, Bean B W, Vanderlip R. Sorghum growth and development. Texas Cooperative Extension Texas A&M University System, College Station, 2003.
[7] 陈荣俊. 江苏省不同生态区小麦高产优质品种筛选与适宜施氮量硏究. 南京农业大学硕士学位论文, 江苏南京, 2015.
Chen R J. The Screening of Wheat Cultivar and Appropriate N rate for High Yield and Quality Cultivation in Different Ecological Zones in Jiangsu Province. MS Thesis of Graduate School of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract)
[8] 葛选良, 史振声, 李凤海, 王志斌, 王宏伟, 吕香玲. 辽宁省不同生态区玉米产量及农艺性状差异研究. 玉米科学, 2013, 21(1): 75-78.
Ge X L, Shi Z S, Li F H, Wang Z B, Wang H W, Lyu X L. Differences of yield and agronomy trait of maize in different ecological regions of Liaoning province. J Maize Sci, 2013, 21(1): 75-78. (in Chinese with English abstract)
[9] 赵丽. 长江流域不同油菜品种产量与倒伏生态区差异研究. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Zhao L. Study on the Difference of Yield and Lodging of Rapeseed in the Yangtze River Basin. MS Thesis of Graduate School of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[10] 王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52: 4166-4176.
doi: 10.3864/j.issn.0578-1752.2019.22.020
Wang J S, Dong E W, Wu A L, Bai W B, Wang Y, Jiao X Y. Responses of fertilization on sorghum grain yield, quality and nutrient utilization to soil fertility. Sci Agric Sin, 2019, 52: 4166-4176. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.020
[11] 曹晓燕, 武爱莲, 王劲松, 董二伟, 焦晓燕. 施氮量对高粱产量、品质及氮利用效率的影响. 作物杂志, 2021, (2): 108-115.
Cao X Y, Wu A L, Wang J S, Dong E W, Jiao X Y. Effects of nitrogen fertilization on yield, quality and nitrogen utilization efficiency of sorghum. Crops, 2021, (2): 108-115. (in Chinese with English abstract)
[12] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响. 作物学报, 2023, 49: 1968-1978.
doi: 10.3724/SP.J.1006.2023.24152
Wang Y, Wang J S, Dong E W, Liu Q X, Wu A L, Jiao X Y. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets. Acta Agron Sin, 2023, 49: 1968-1978. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.24152
[13] 刘秋霞, 任涛, 廖世鹏, 李小坤, 丛日环, 石磊, 鲁剑巍. 不同氮素供应对油菜苗期生长及碳氮分配的影响. 中国油料作物学报, 2019, 41(1): 92-100.
Liu Q X, Ren T, Liao S P, Li X K, Cong R H, Shi L, Lu J W. Effect of different nitrogen application on seedling growth and allocation of carbon and nitrogen in oilseed rape (Brassica napus L.). Chin J Oil Crop Sci, 2019, 41: 92-100. (in Chinese with English abstract)
[14] Fukayama H, Ueguchi C, Nishikawa K, Katoh N, Ishikawa C, Masumoto C, Hatanaka T, Misoo S. Overexpression of Rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol, 2012, 53: 976-986.
doi: 10.1093/pcp/pcs042 pmid: 22470057
[15] Xiong D, Liu XI, Liu L, Douthe C, Li Y, Peng S, Huang J. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ, 2015, 38: 2541-2550.
doi: 10.1111/pce.12558
[16] Schjoerring J K, Bock J G, Gammelvind L, Jensen C R, Mogensen V O. Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation. Plant Soil, 1995, 177: 255-264.
doi: 10.1007/BF00010132
[17] Santiago J P, Tegeder M. Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol, 2016, 171: 508-521.
doi: 10.1104/pp.16.00244 pmid: 27016446
[18] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2020.
Liu Q X. Study on the Mechanism of Yield Components of Direct-sown Oilseed rape (Brassica napus L.) under Regulation of Nitrogen Fertilizer. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[19] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响. 作物学报, 2021, 47: 342-350.
doi: 10.3724/SP.J.1006.2021.04091
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution. Acta Agron Sin, 2021, 47: 342-350. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04091
[20] 鲍士旦. 土壤农化分析方法. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. pp 25-114. (in Chinese)
[21] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 203-205.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 203-205. (in Chinese)
[22] 霍权恭, 范璐, 周展明. GB/T 15686-2008 高粱单宁含量的测定. In: 全国粮油标准化技术委员会. 中华人民共和国国家标准. 北京: 中国标准出版社, 2009.
Huo Q G, Fan L, Zhou Z M. GB/T 15686-2008 Sorghum-Determination of Tannin Content. In: Grains and Oils. State Standard of the People's Republic of China. Beijing: Standards Press of China, 2009. (in Chinese)
[23] Macholdt J, Piepho H P, Honermeier B. Mineral NPK and manure fertilization affecting the yield stability of winter wheat: results from a long-term field experiment. Eur J Agron, 2019, 102: 14-22.
doi: 10.1016/j.eja.2018.10.007
[24] Ye Y, Wang G, Huang Y, Zhu Y, Meng Q, Chen X, Zhang F, Cui Z. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Res, 2011, 124: 316-322.
doi: 10.1016/j.fcr.2011.06.023
[25] Yan P, Yue S C, Meng Q F, Pan J X, Ye Y L, Chen X P, Cui Z L. An understanding of the accumulation of biomass and nitrogen is benefit for Chinese maize production. Agron J, 2016, 108: 895.
doi: 10.2134/agronj2015.0388
[26] Liu H Y, Won P L P, Banayo N P M, Nie L X, Peng S B, Kato Y. Late-season nitrogen applications improve grain yield and fertilizer-use efficiency of dry direct-seeded rice in the tropics. Field Crops Res, 2019, 233: 114-120.
doi: 10.1016/j.fcr.2019.01.010
[27] 王国琴, 孟祥兆, 郭法申. 气候条件与高粱干物质积累动态特征分析. 生态学杂志, 1992, 11(5): 7-11.
Wang G Q, Meng X Z, Guo F S. Climate conditions and dynamic characteristics of dry matter accumulation in sorghum. Chin J Ecol, 1992, 11(5): 7-11. (in Chinese with English abstract)
[28] Brenner M L, Cheikh N. The Role of Hormones in Photosynthate Partitioning and Seed Filling. In: Davies P J, eds. Plant Hormones. Dordrecht: Kluwer Academic Publishers, 1995. pp 649-670.
[29] Jameson P E, Song J. Cytokinin: a key driver of seed yield. J Exp Bot, 2005, 67: 593-606.
doi: 10.1093/jxb/erv461
[30] Li G, Hu Q, Shi Y, Cui K, Nie L, Huang J, Peng S. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front Plant Sci, 2018, 9: 1128.
doi: 10.3389/fpls.2018.01128 pmid: 30108604
[31] 钱晓刚, 陆引罡, 魏成熙, 周炎. 贵州酒用高粱对氮磷钾养分的吸收规律. 土壤通报, 1997, 28(1): 31-33.
Qian X G, Lu Y G, Wei C X, Zhou Y. Nitrogen, phosphorus and potassium nutrients absorption of sorghum for wine use in Guizhou province. Chin J Soil Sci, 1997, 28(1): 31-33. (in Chinese)
[32] 屈洋, 张飞, 王可珍, 韩芳, 刘洋, 罗艳, 高小丽, 冯佰利, 卢峰. 黄淮西部高粱籽粒产量与品质对气候生态条件的响应. 中国农业科学, 2019, 52: 3242-3257.
doi: 10.3864/j.issn.0578-1752.2019.18.016
Qu Y, Zhang F, Wang K Z, Han F, Liu Y, Luo Y, Gao X L, Feng B L, Lu F. Response of sorghum (Sorghum bicolor (L.) Moench) yield and quality to climatic and ecological conditions on the west Yellow-Huaihe-Haihe Rivers plain. Sci Agric Sin, 2019, 52: 3242-3257. (in Chinese with English abstract)
[33] 柯福来, 邹剑秋, 朱凯. 气象因子与不同高粱品种产量的相关分析. 山西农业大学学报(自然科学版), 2020, 40(3): 69-77.
Ke F L, Zou J Q, Zhu K. Correlation analysis of yield and Meteorological factors in different Sorghum varieties. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(3): 69-77. (in Chinese with English abstract)
[34] 时伟, 郑红梅, 柴丽娟, 陆震鸣, 张晓娟, 许正宏. 酒用高粱的营养成分及其酿造性能研究进展. 食品与发酵工业, 2022, 48(21): 307-317.
Shi W, Zheng H M, Chai L J, Lu Z M, Zhang X J, Xu Z H. Research progress on the nutritional components and brewing performance of brewing sorghum. Food Ferm Ind, 2022, 48(21): 307-317. (in Chinese with English abstract)
[35] 季树太, 王佐民, 郭书刚. 酿酒高粱研究刍议. 酿酒, 2019, 46(2): 28-30.
Ji S T, Wang Z M, Guo S G. Discussion on the research of sorghum for liquor making. Liquor Making, 2019, 46(2): 28-30. (in Chinese with English abstract)
[36] 田新惠, 唐玉明, 任道群, 姚万春, 刘茂柯, 刘颖. 酿酒高粱蛋白提取工艺优化及其亚基组成分析. 食品工业, 2018, 39(3): 48-51.
Tian X H, Tang Y M, Ren D Q, Yao W C, Liu M K, Liu Y. Optimization of extraction process and analysis of subunit component of protein from brew sorghum seed. Food Ind, 2018, 39(3): 48-51. (in Chinese with English abstract)
[37] 王艳秋, 张飞, 张旷野, 王佳旭, 朱凯, 熊文强, 郭晓雷, 邹剑秋. 春播晚熟酿造高粱不同生态区高产高效品种筛选与评价. 山西农业大学学报(自然科学版), 2021, 41(6): 91-98.
Wang Y Q, Zhang F, Zhang K Y, Wang J X, Zhu K, Xiong W Q, Guo X L, Zou J Q. Screening and evaluation of high-yielding and high-efficiency varieties of spring-sown late-maturing brewing sorghum in different ecological zones. J Shanxi Agric Univ (Nat Sci Edn), 2021, 41(6): 91-98. (in Chinese with English abstract)
[38] 程度, 曹建兰, 王珂佳, 李豆南, 罗小叶, 陈杰, 邱树毅. 高粱对酱香型白酒品质影响的研究进展. 食品科学, 2022, 43(7): 356-364.
Cheng D, Cao J L, Wang K J, Li D N, Luo X Y, Chen J, Qiu S Y. Progress in understanding the effect of sorghum on the quality of Maotai flavor Baijiu. Food Sci, 2022, 43(7): 356-364. (in Chinese with English abstract)
[1] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[2] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[5] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[12] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[13] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[14] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[15] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .