欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3090-3099.doi: 10.3724/SP.J.1006.2023.34029

• 耕作栽培·生理生化 • 上一篇    下一篇

播期、密度对带状间作大豆茎叶生长及产量形成的影响

高超(), 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文(), 杨文钰   

  1. 四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2023-02-17 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-06-02
  • 通讯作者: 雍太文, E-mail: yongtaiwen@sicau.edu.cn
  • 作者简介:E-mail: 1768161945@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(Soybean, CARS-04-PS20);四川省科技计划项目(21NZZH0063)

Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean

GAO Chao(), CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen(), YANG Wen-Yu   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2023-02-17 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-06-02
  • Supported by:
    China Agriculture Research System of MOF and MARA(Soybean, CARS-04-PS20);Sichuan Science and Technology Plan(21NZZH0063)

摘要:

基于西南地区油菜收获后大豆-玉米带状间作种植存在的弱光环境、品种和密度筛选等问题, 选择2个不同熟期的品种南夏豆25号(ND25, 中晚熟, 多分枝)、齐黄34 (QH34, 早熟, 少分枝), 分析播期(2021年, S1: 5月17日, S2: 5月27日, S3: 6月6日; 2022年, S1: 5月10日, S2: 5月25日, S3: 6月9日)及密度(D1: 81,000株 hm-2, D2: 101,000株 hm-2, D3: 140,000株 hm-2, D4: 171,000株 hm-2)对带状间作大豆茎叶生长及产量形成的影响。结果表明: 同一密度, 随着播期的推迟, 2个品种始粒期的叶面积指数逐渐减小, 冠层内部透光率逐渐增加, ND25对荚的分配比率逐渐增加, 倒伏率逐渐降低, QH34对荚的分配比率逐渐减少, 倒伏率逐渐增加; 同一播期, 随着密度的增加, 2个品种始粒期的叶面积指数逐渐增加, 透光率逐渐减小, 对荚的干物质分配比率逐渐减少, 倒伏率逐渐上升。光环境及干物质分配差异对不同品种的产量影响不同, ND25同一密度不同播期间, S3>S2>S1, 同一播期不同密度间, D1>D2>D3>D4, ND25品种S3播期D1密度产量最优, 为1752.89 kg hm-2; QH34同一密度不同播期间, S1>S2>S3, 同一播期不同密度间, D3>D2>D1>D4, QH34品种S1播期D3密度产量最优, 为1538.64 kg hm-2。因此, 中晚熟品种应适当晚播, 早熟品种应适当早播, 多分枝品种适度稀植, 少分枝品种适度密植, 各品种通过播期、密度协同可提高大豆产量。

关键词: 大豆-玉米带状间作, 播期, 密度, 光合特性, 干物质分配, 产量

Abstract:

Based on the problems of weak light environment, variety and density selection in soybean-maize strip intercropping after rapeseed harvest in Southwest China, two varieties with different of maturity periods, Nanxiadou 25 (ND25, intermediate-late maturing, multi-branched) and Qihuang 34 (QH34, early maturing, less branched) were selected to explore the effects of sowing date (2021, S1: May 17, S2: May 27, S3: June 6; 2022, S1: May 10, S2: May 25, S3: June 9) and density (D1: 81,000 plants hm-2, D2: 101,000 plants hm-2, D3: 140,000 plants hm-2, D4: 171,000 plants hm-2) on the stem and leaf growth and yield formation of soybeans in strip intercropping. The results showed that at the same density, as the sowing date was delayed, the leaf area index of the two varieties decreased gradually at the beginning seed stage and the light transmittance inside the canopy increased gradually, the distribution ratio to pods of ND25 increased gradually and the lodging rate gradually decreased, while the distribution ratio to pods of QH34 to pods gradually decreased and the lodging rate gradually increased. At the same sowing date, with the increase of density, the leaf area index of the two varieties at the beginning seed stage gradually increased, the light transmittance gradually decreased, the dry matter distribution ratio of the pods gradually decreased, and the lodging rate gradually increased. Differences in light environment and dry matter distribution had different effects on the yield of different varieties. For ND25, S3 > S2 > S1 and D1 > D2 > D3 > D4, optimum yield was obtained with the yield of 1752.89 kg hm-2 at S3 and D1. For QH34, S1 > S2 > S3 and D3 > D2 > D1 > D4, optimum yield was obtained with the yield of 1538.64 kg hm-2 at S1 and D3. Therefore, intermediate-late maturing varieties should be appropriately sown later, while early maturing varieties should be appropriately sown earlier. Multi-branched varieties should be appropriately thinly planted, while less-branched varieties should be appropriately densely planted. The yield of soybeans can be increased through the synergy of sowing date and density for each variety.

Key words: soybean-maize strip intercropping, sowing date, density, photosynthetic characteristics, dry matter allocation, yield

图1

大豆-玉米带状间作田间种植图"

图2

不同播期、密度下大豆冠层内部透光率 ND25: 南夏豆25号; QH34: 齐黄34。播期(S) 2021, S1: 5/17; S2: 5/27; S3: 6/6; 2022, S1: 5/10; S2: 5/25; S3: 6/9。密度(D) D1: 8.1×104株hm-2; D2: 10.1×104株 hm-2; D3: 14×104株 hm-2; D4: 17.1×104株 hm-2。V5: 第5片三出复叶展开; R5: 鼓粒期。图上不同小写字母表示同一播期不同密度在0.05概率水平差异显著。"

图3

不同播期、密度下大豆叶片SPAD值 缩写和处理同图2。图上不同小写字母表示同一播期不同密度在0.05概率水平差异显著。"

图4

不同播期、密度下大豆叶面积指数 缩写和处理同图2。LAI: 叶面积指数。图上不同小写字母表示同一播期不同密度在0.05概率水平差异显著。"

图5

不同播期、密度下大豆干物质分配 缩写和处理同图2。图上不同小写字母表示同一播期不同密度间相同指标在0.05概率水平差异显著。"

图6

不同播期、密度下大豆倒伏率 缩写和处理同图2。图上不同小写字母表示同一播期不同密度在0.05概率水平差异显著。"

表1

不同播期、密度下大豆的产量构成"

年份
Year
品种
Variety
播期
Sowing
有效株数NEP (plant m-2) 单株粒数 GNP 百粒重 GW (g) 产量 Yield (kg hm-2)
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4
2021 ND25 S1 6.99 c 8.21 b 8.59 ab 8.85 a 64.63 a 48.90 b 41.33 c 38.70 c 24.52 b 25.28 ab 25.56 a 25.92 a 1107.67 a 1014.10 ab 906.74 bc 887.55 c
S2 7.31 d 8.43 c 9.10 b 10.35 a 75.60 a 58.43 b 48.15 c 41.30 d 24.90 a 25.31 a 25.45 a 25.82 a 1375.87 a 1246.59 b 1115.39 c 1103.14 c
S3 7.72 d 9.07 c 10.48 b 11.25 a 88.47 a 66.53 b 49.90 c 43.93 d 25.28 a 25.40 a 25.59 a 26.23 a 1727.28 a 1533.45 b 1339.71 c 1296.28 c
QH34 S1 7.69 c 9.10 b 11.47 a 12.08 a 62.17 a 57.87 b 52.42 c 35.20 d 23.60 b 24.11 b 24.37 b 25.88 a 1127.71 c 1268.98 b 1465.43 a 1100.25 c
S2 7.50 d 8.65 c 10.71 b 11.35 a 53.00 a 49.67 a 41.70 b 27.67 c 22.78 b 23.22 b 23.49 ab 24.53 a 904.09 b 994.67 ab 1047.10 a 770.26 c
S3 7.28 c 8.37 b 10.16 a 10.71 a 38.36 a 37.58 a 33.27 b 22.77 c 20.62 b 21.54 b 22.97 a 23.64 a 575.86 c 677.40 b 775.76 a 575.99 c
2022 ND25 S1 7.05 d 8.56 c 9.20 b 10.00 a 68.77 a 55.67 b 46.23 c 42.25 c 25.32 a 25.87 a 25.31 a 25.17 a 1229.29 a 1231.40 a 1079.87 b 1066.96 b
S2 7.40 d 8.94 c 9.81 b 11.06 a 84.58 a 66.50 b 50.85 c 42.25 d 25.04 a 25.39 a 25.24 a 25.94 a 1567.65 a 1509.12 a 1258.34 b 1211.40 b
S3 7.79 d 9.26 c 10.42 b 11.76 a 89.93 a 69.10 b 51.85 c 45.06 d 25.38 a 25.45 a 25.79 a 25.87 a 1778.49 a 1628.73 b 1392.63 c 1369.61 c
QH34 S1 7.63 c 9.46 b 12.02 a 12.53 a 68.65 a 60.86 b 55.63 b 37.97 c 23.16 b 23.25 b 24.16 b 25.47 a 1212.16 c 1335.79 b 1611.85 a 1212.30 c
S2 7.34 d 9.17 c 11.03 b 11.63 a 55.12 a 49.59 a 43.19 b 30.25 c 22.70 b 23.07 b 23.54 ab 24.48 a 918.30 b 1047.43 a 1121.88 a 861.43 b
S3 7.08 c 8.94 b 10.48 a 10.96 a 46.88 a 44.93 a 38.75 b 22.70 c 21.33 c 22.52 b 23.22 ab 23.74 a 707.10 b 904.46 a 941.89 a 588.74 c
有效株数 单株粒数 百粒重 产量 有效株数 单株粒数 百粒重 产量
NEP (plant m-2) GNP GW (g) Yield (kg hm-2) NEP (plant m-2) GNP GW (g) Yield (kg hm-2)
F
F-value
ND25 年份Y 31.81** 38.26** 0.10 ns 53.63** 9.78** 26.47** 0.00 ns 43.17**
播期S 105.71** 127.12** 1.43 ns 181.24** 46.22** 229.72** 40.94** 493.83**
密度D 344.54** 644.65** 5.10** 60.05** 493.53** 241.61** 35.36** 85.48**
Y×S 2.60ns 2.89 ns 0.05 ns 3.49* 0.10 ns 2.53 ns 3.05 ns 2.17 ns
Y×D 4.14* 1.89 ns 1.30 ns 0.85 ns 2.64 ns 1.36 ns 0.06 ns 0.89 ns
S×D 7.45** 15.06** 0.47 ns 2.55* 3.19* 2.59* 1.41 ns 3.42**
Y×S×D 0.77 ns 0.91 ns 0.73 ns 0.32 ns 0.14 ns 0.95 ns 0.36 ns 1.50 ns
[1] Man W, Fu L, Song W, Wu C, Jiang B, Hou W, Ren G, Han T. Temporospatial characterization of nutritional and bioactive components of soybean cultivars in China. J Am Oil Chem Soc, 2016, 93: 1637-1654.
doi: 10.1007/s11746-016-2908-4
[2] 潘雪婷, 穆月英. 国际关系对中国大豆进口来源的影响. 世界农业, 2022, 44(7): 57-66.
Pan X T, Mu Y Y. The influence of international relations on China's soybean import sources. World Agric, 2022, 44(7): 57-66 (in Chinese).
[3] 王禹, 李干琼, 喻闻, 冯瑶, 钟鑫, 刘然, 许世卫. 中国大豆生产现状与前景展望. 湖北农业科学, 2020, 59(21): 201-207.
Wang Y, Li G Q, Yu W, Feng Y, Zhong X, Liu R, Xu S W. Current situation and prospect of soybean production in China. Hubei Agric Sci, 2020, 59(21): 201-207 (in Chinese with English abstract).
[4] 农业农村部: 编发大豆玉米带状复合种植指南. 农业机械, 2022, 65(2): 46.
Ministry of Agriculture and Rural Affairs: guide for braided soybean and corn strip compound planting. Farm Mach, 2022, 65(2): 46 (in Chinese).
[5] Umburanas R C, Yokoyama A H, Balena L, Dourado-Neto D, Teixeira W F, Zito R K, Reichardt K, Kawakami J. Soybean yield in different sowing dates and seeding rates in a subtropical environment. Int J Plant Prod, 2019, 13: 117-128.
doi: 10.1007/s42106-019-00040-0
[6] Xu C L, Li R D, Song W W, Wu T T, Sun S, Han T F, Wu C X. High density and uniform plant distribution improve soybean yield by regulating population uniformity and canopy light interception. Agronomy, 2021, 11: 1880.
doi: 10.3390/agronomy11091880
[7] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Raza A, 张熠, Ahmad I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54: 4084-4096.
doi: 10.3864/j.issn.0578-1752.2021.19.005
Cheng B, Liu W G, Wang L, Xu M, Qin S S, Lu J J, Gao Y, Li S X, Raza A, Zhang Y, Ahmad I, Jing S Z, Liu R J, Yang W Y. Effects of planting density on photosynthesis, yield and stem toppling resistance of soybean under corn-soybean zonal intercropping. Sci Agric Sin, 2021, 54: 4084-4096 (in Chinese with English abstract).
[8] 赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26: 1634-1642.
Zhao J H, Sun J H, Li W Q. Effects of maize sowing date on yield and interspecific competitiveness of soybean/maize. Chin J Eco-Agric, 2018, 26: 1634-1642 (in Chinese with English abstract).
[9] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019, 38: 229-235.
Zhao J H, Sun J H, Chen L Z, Li W Q. Effects of maize row spacing on growth and interspecific competitiveness of soybean/ maize intercropping. Soybean Sci, 2019, 38: 229-235 (in Chinese with English abstract).
[10] 徐婷. 播期和密度对套作大豆光合特性、干物质积累及产量的影响. 四川农业大学硕士学位论文,四川成都, 2014.
Xu T. Effects of Sowing Date and Density on Photosynthetic Characteristics, Dry Matter Accumulation and Yield of Intercropped Soybean. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[11] 李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 施氮量对不同株型小麦品种叶型垂直分布特征的影响. 作物学报, 2011, 37: 127-137.
doi: 10.3724/SP.J.1006.2011.00127
Li G Q, Tang L, Zhang W Y, Cao W X, Zhu Y. Effects of nitrogen application rate on vertical distribution characteristics of leaf patterns of wheat cultivars with different plant types. Acta Agron Sin, 2011, 37: 127-137 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00127
[12] 程伟燕, 李志刚, 李瑞平. 密度对大豆光合特性和产量的影响. 作物杂志, 2010, (4): 69-72.
Cheng W Y, Li Z G, Li R P. Effects of density on photosynthetic characteristics and yield of soybean. Crops, 2010, (4): 69-72 (in Chinese with English abstract).
[13] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34: 447-455.
doi: 10.3724/SP.J.1006.2008.00447
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P. Canopy structure and photosynthetic characteristics of summer maize under different planting densities. Acta Agron Sin, 2008, 34: 447-455 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00447
[14] Cheng B, Raza A, Wang L, Xu M, Lu J J, Gao Y, Qin S S, Zhang Y, Ahmad I, Zhou T, Wen B X, Yang W Y, Liu W G. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy, 2020, 10: 1177.
doi: 10.3390/agronomy10081177
[15] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征. 中国生态农业学报, 2022, 30: 1750-1761.
Fan H, Yin W, Chai Q. Photosynthetic physiological mechanism and canopy microenvironment characteristics of intercropping dominance. Chin J Eco-Agric, 2022, 30: 1750-1761 (in Chinese with English abstract).
[16] 翟云龙, 章建新, 薛丽华, 李宁. 密度对超高产春大豆农艺性状的影响. 中国农学通报, 2005, 22(2): 109-111.
Zhai Y L, Zhang J X, Xue L H, Li N. Effect of density on agronomic characters of super high yield spring soybean. Chin Agric Sci Bull, 2005, 22(2): 109-111 (in Chinese with English abstract).
[17] 高永刚, 高明, 杨晓强, 刘丹, 张志国, 孙守军. 播期对大豆开花期和鼓粒期叶片光合特性及产量的影响. 大豆科学, 2020, 39: 227-234.
Gao Y G, Gao M, Yang X Q, Liu D, Zhang Z G, Sun S J. Effects of sowing date on photosynthetic characteristics and yield of soybean leaves at flowering and filling stage. Soybean Sci, 2020, 39: 227-234 (in Chinese with English abstract).
[18] 白磊.施氮量与密度对高油大豆光合生产及产质量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Bai L. Effects of Nitrogen Application Rate and Density on Photosynthetic Production and Yield Quality of High Oil Soybean. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[19] 田艺心, 高祺, 王春雨, 曹鹏鹏, 朱冠雄, 高凤菊. 高蛋白大豆新品种菏豆38播期与密度优化. 黑龙江农业科学, 2022, 45(7): 8-13.
Tian Y X, Gao Q, Wang C Y, Cao P P, Zhu G X, Gao F J. Sowing date and density optimization of a new soybean variety with high protein, Hedou 38. Heilongjiang Agric Sci, 2022, 45(7): 8-13 (in Chinese with English abstract).
[20] 徐海风, 杨加银, 熊正海. 播期、 密度对夏大豆新品种淮豆12产量的影响. 大豆科技, 2016, 24(4): 8-11.
Xu H F, Yang J Y, Xiong Z H. Effects of sowing date and density on yield of a new summer soybean variety Huaidou 12. Soybean Sci Technol, 2016, 24(4): 8-11 (in Chinese with English abstract).
[21] 李思同, 张桂花, 谷传彦, 黄兴蛟, 海亚耕. 播期•密度对夏大豆产量和脂肪含量的影响. 安徽农业科学, 2007, 35: 9185-9186.
Li S T, Zhang G H, Gu C Y, Huang X J, Hai Y G. Effects of sowing date and density on yield and fat content of summer soybean. J Anhui Agric Sci, 2007, 35: 9185-9186 (in Chinese with English abstract).
[22] 吴俊彦. 播期对黑河主栽大豆生育进程和产量及品质的影响. 中国农业科学院硕士学位论文,北京, 2013.
Wu J Y. Effects of Sowing Date on Growth Process, Yield and Quality of Main Soybean in Heihe. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[12] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[13] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[14] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[15] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .