欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3364-3376.doi: 10.3724/SP.J.1006.2023.33001

• 耕作栽培·生理生化 • 上一篇    下一篇

基于无人机多光谱影像和机器学习方法的玉米叶面积指数反演研究

马俊伟1,2(), 陈鹏飞2,4,*(), 孙毅3, 谷健3, 王李娟1,*()   

  1. 1江苏师范大学地理测绘与城乡规划学院, 江苏徐州 221116
    2中国科学院地理科学与资源研究所 / 资源与环境信息系统国家重点实验室, 北京 100101
    3中国科学院沈阳应用生态研究所, 辽宁沈阳 110016
    4江苏省地理信息资源开发与利用协同创新中心, 江苏南京 210023
  • 收稿日期:2023-01-01 接受日期:2023-04-17 出版日期:2023-12-12 网络出版日期:2023-05-05
  • 通讯作者: * 陈鹏飞, E-mail: pengfeichen@igsnrr.ac.cn; 王李娟, E-mail: wanglj2013@jsnu.edu.cn
  • 作者简介:E-mail: majunwei@jsnu.edu.cn
  • 基金资助:
    中国科学院先导A专项(XDA28040502);国家自然科学基金项目(41871344);江苏师范大学研究生科研创新计划项目(2022XKT0070)

Comparing different machine learning methods for maize leaf area index (LAI) prediction using multispectral image from unmanned aerial vehicle (UAV)

MA Jun-Wei1,2(), CHEN Peng-Fei2,4,*(), SUN Yi3, GU Jian3, WANG Li-Juan1,*()   

  1. 1School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
    2State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    4Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, Jiangsu, China
  • Received:2023-01-01 Accepted:2023-04-17 Published:2023-12-12 Published online:2023-05-05
  • Contact: * E-mail: pengfeichen@igsnrr.ac.cn; E-mail: wanglj2013@jsnu.edu.cn
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28040502);National Natural Science Foundation of China(41871344);Jiangsu Normal University Graduate Research Innovation Program Project(2022XKT0070)

摘要:

为实现基于机器学习方法和无人机影像的叶面积指数(leaf area index, LAI)准确估测。本研究对比了人工神经网络法(Artificial Neural Network algorithm, ANN)、高斯过程回归法(Gaussian Process Regression algorithm, GPR)、支持向量回归法(Support Vector Regression algorithm, SVR)和梯度提升决策树法(Gradient Boosting Decision Tree, GBDT)等几种主流的机器学习方法在基于无人机影像的玉米LAI反演中的优劣。为此, 开展了不同有机肥、无机肥、秸秆还田以及种植密度处理的玉米田间试验, 在不同生育期获取了无人机多光谱影像和LAI数据。基于这些数据, 首先通过相关性分析, 选择对LAI敏感的光谱指数作为估测变量, 然后分别耦合偏最小二乘法(Partial Least Squares Regression, PLSR)和ANN、GPR、SVR、GBDT建立LAI反演模型, 并对它们进行对比分析。结果表明, PLSR+GBDT法构建的LAI反演模型精度最高, 稳定性最好, 建模Rcal2和RMSEcal为0.90和0.25, 验证Rval2和RMSEval为0.90和0.29; 与PLSR+GBDT模型结果最接近的是基于PLSR+GPR法建立的模型, 其建模Rcal2和RMSEcal为0.86和0.30, 验证Rval2和RMSEval为0.89和0.29, 且具有训练速度快, 并能给出反演结果不确定度的优势; PLSR+ANN法的建模Rcal2和RMSEcal为0.85和0.31, 验证Rval2和RMSEval为0.89和0.30; PLSR+SVR法的建模Rcal2和RMSEcal为0.86和0.32, 验证Rval2和RMSEval为0.90和0.33。因此, PLSR+GBDT法和PLSR+GPR法被推荐作为玉米LAI反演模型构建的最优方法。

关键词: 叶面积指数, 机器学习, 无人机, 多光谱影像, 玉米

Abstract:

To make an accurate estimation of leaf are index (LAI) based on machine learning methods and images from UAV, we compared the several mainstream machine learning methods for maize LAI prediction, such as Artificial Neural Network method (ANN), Gaussian Process Regression method (GPR), Support Vector Regression method (SVR), and Gradient Boosting Decision Tree (GBDT). For this purpose, field experiments that considering apply of different amount of organic fertilizer, different amount of inorganic fertilizer, different amount of crop residue, and different planting density were carried out. Based on these experiments, field campaign were conducted to obtain UAV multispectral images and LAI data at different growth stages in maize. Based on above data, firstly, correlation analysis was used to select LAI-sensitive spectral indices, and then the Partial Least Squares Regression method (PLSR) and ANN, GPR, SVR, GBDT were coupled to design the LAI prediction models, respectively, and their performance for LAI prediction were compared. The results showed that the LAI prediction model constructed by PLSR+GBDT method had the highest accuracy and the best stability. The models of R2 and RMSE values were 0.90 and 0.25, and the verified R2 and RMSE values were 0.90 and 0.29 during validation, respectively. The model based on PLSR+GPR model was followed, with R2 and RMSE values of 0.86 and 0.30 during calibration, and R2 and RMSE values of 0.89 and 0.29 during validation, respectively. Besides, it had faster training speed and could give the uncertainty of the prediction. The model designed by PLSR+ANN method had R2 and RMSE values of 0.85 and 0.31 during calibration, and R2 and RMSE values of 0.89 and 0.30 during validation, respectively. The model designed by PLSR+SVR method had R2 and RMSE values of 0.86 and 0.32, and R2 and RMSE values of 0.90 and 0.33, respectively. Therefore, PLSR+GBDT method and PLSR+GPR method are recommended as the optimal methods for designing maize LAI prediction models.

Key words: LAI, machine learning, UAV, multispectral image, maize

图1

研究区位置及田间小区分布情况"

表1

Altum多光谱相机的可见-近红外谱区波段相关参数信息"

波段名称
Band name
中心波长
Central wavelength
波宽
Bandwidth
蓝光波段Blue band 475 20
绿光波段Green band 560 20
红光波段Red band 668 10
红边波段Red-edge band 717 10
近红外波段Near infrared band 840 40

表2

本研究选取的光谱指数"

缩写
Abbreviation
全称
Full name
公式
Formula
来源
Source
NDVI 归一化植被指数
Normalized Difference Vegetation Index
$\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R} \right)$ [22]
RVI 比值植被指数
Ratio Vegetation Index
$\text{NIR}/\text{R}$ [23]
DVI 差值植被指数
Difference Environmental Vegetation Index
$\text{NIR}-\text{R}$ [24]
EVI 增强植被指数
Enhanced Vegetation Index
$2.5\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+6\text{R}-\text{7}\text{.5B}+\text{1} \right)$ [25]
GNDVI 绿色归一化植被指数
Green Normalized Difference Vegetation Index
$\left( \text{NIR}-\text{G} \right)/\left( \text{NIR}+\text{G} \right)$ [26]
MSAVI 调整型土壤调节植被指数
Modified Soil Adjusted Vegetation Index
$\left( \text{2NIR}+1-\text{sqrt}\left( {{\left( 2\text{NIR+1} \right)}^{2}}-\text{8}\left( \text{NIR}-\text{R} \right) \right) \right)/\text{2}$ [27]
OSAVI 优化型土壤调节植被指数
Optimized Soil Adjusted Vegetation Index
$\text{1}\text{.16}\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R}+\text{0}\text{.16} \right)$ [28]
TVI 三角形植被指数
Triangular Vegetation Index
$\text{60}\left( \text{NIR}-\text{G} \right)-\text{100}\left( \text{R}-\text{G} \right)$ [29]
GRVI 绿色比值植被指数
Green Ratio Vegetation Index
$\text{NIR}/\text{G}-\text{1}$ [30]
SAVI 土壤调节植被指数
Soil Adjusted Vegetation Index
$\text{1}\text{.5}\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R}+\text{0}\text{.5} \right)$ [31]
RENDVI 红边归一化差值植被指数
Red Edge Normalized Difference Vegetation Index
$\left( \text{RE}-\text{R} \right)/\left( \text{RE}+\text{R} \right)$ [32]
RESR 红边比值植被指数
Red-Edge Simple Ratio
RE/R [33]
MCARI 改进叶绿素吸收指数
Modified Chlorophyll Absorption Ratio Index
$\left( \left( \text{RE}-\text{R} \right)-0.2\left( \text{RE}-\text{G} \right) \right)\left( \text{RE}/\text{R} \right)$ [34]
TCARI 转换叶绿素吸收指数
Transformed Chlorophyll Absorption in Reflectance Index
$3\left( \left( \text{RE}-\text{R} \right)-0.2\left( \text{RE}-\text{G} \right)\left( \text{RE}/\text{R} \right) \right)$ [35]
TCARI/OSAVI 组合植被指数
Combined Spectral Index
TCARI/OSAVI [36]
VARI 抗大气指数
Visible Atmospherically Resistant Index
$\left( \text{G}-\text{R} \right)/\left( \text{G}+\text{R}-\text{B} \right)$ [37]
RDVI 重归一化植被指数
Re-normalized Difference Vegetation Index
$\left( \text{NIR}-\text{R} \right)/\text{sqrt}\left( \text{NIR}+\text{R} \right)$ [38]
MSR 改进比值植被指数
Modified Simple Ratio
$\left( \text{NIR/R}-1 \right)/\text{sqrt}\left( \text{NIR/R}+1 \right)$ [39]
NGI 归一化绿色指数
Normalized Green Index
$G/\left( \text{NIR}+\text{G}+\text{RE} \right)$ [40]
NDRE 归一化差值红边指数
Normalized Difference Red Edge Index
$\left( \text{NIR}-\text{RE} \right)/\left( \text{NIR}+\text{RE} \right)$ [41]

图2

基于不同方法的LAI反演模型构建技术路线图"

表3

玉米LAI数据统计"

生育期
Growth stage
样本数
Number of samples
最小值
Min. value
最大值
Max. value
平均值
Average value
标准差
Standard deviation
方差
Variance
变异系数
Coefficient of variation (%)
四叶期V4 stage 70 0.37 2.20 0.83 0.34 0.11 40.96
九叶期V9 stage 70 1.61 3.19 2.31 0.34 0.12 14.72

表4

各光谱指数与玉米LAI的相关性分析结果"

光谱指数
Spectral index
相关系数
Correlation coefficient
光谱指数
Spectral index
相关系数
Correlation coefficient
NDVI 0.84** RENDVI 0.81**
RVI 0.85** RESR 0.80**
DVI 0.89** MCARI 0.79**
EVI 0.88** TCARI 0.67**
GNDVI 0.88** TCARI/OSAVI -0.78**
MSAVI 0.88** VARI 0.82**
OSAVI 0.87** RDVI 0.88**
TVI 0.88** MSR 0.86**
GRVI 0.89** NGI -0.88**
SAVI 0.88** NDRE 0.90**

图3

PLSR+ANN模型交叉检验结果"

图4

基于PLSR+ANN的玉米LAI反演模型结果 (a): 建模; (b): 验证。"

图5

PLSR+GPR模型交叉验证结果"

图6

基于PLSR+GPR的玉米LAI反演模结果 (a): 建模; (b): 验证。"

图7

PLSR+SVR模型交叉验证结果"

图8

基于PLSR+SVR的玉米LAI反演模结果 (a): 建模; (b): 验证。"

图9

PLSR+GBDT模型交叉验证结果"

图10

基于PLSR+GBDT的玉米LAI反演模结果 (a): 建模; (b): 验证。"

表5

不同方法下玉米LAI反演结果"

模型
Models
建模Calibration 验证Validation
Rcal2 RMSEcal Rval2 RMSEval
PLSR+ANN 0.85 0.31 0.89 0.30
PLSR+GPR 0.86 0.30 0.89 0.29
PLSR+SVR 0.86 0.32 0.90 0.33
PLSR+GBDT 0.90 0.25 0.90 0.29
[1] 夏天, 吴文斌, 周清波, 周勇, 于雷. 基于高光谱的冬小麦叶面积指数估算方法. 中国农业科学, 2012, 45: 2085-2092.
doi: 10.3864/j.issn.0578-1752.2012.10.022
Xia T, Wu W B, Zhou Q B, Zhou Y, Yu L. An estimation method of winter wheat leaf area index based on hyperspectral data. Sci Agric Sin, 2012, 45: 2085-2092. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.10.022
[2] Inoue Y. Synergy of remote sensing and modeling for estimating ecophysiological processes in plant production. Plant Prod Sci, 2003, 6: 3-16.
doi: 10.1626/pps.6.3
[3] 李俐, 许连香, 王鹏新, 齐璇, 王蕾. 基于叶面积指数的河北中部平原夏玉米单产预测研究. 农业机械学报, 2020, 51(6): 198-208.
Li L, Xu L X, Wang P X, Qi X, Wang L. Summer maize yield forecasting based on leaf area index. Trans CSAM, 2020, 51(6): 198-208. (in Chinese with English abstract)
[4] 苏伟, 侯宁, 李琪, 张明政, 赵晓凤, 蒋坤萍. 基于Sentinel-2遥感影像的玉米冠层叶面积指数反演. 农业机械学报, 2018, 49(1): 151-156.
Su W, Hou N, Li Q, Zhang M Z, Zhao X F, Jiang K P. Retrieving leaf area index of corn canopy based on Sentinel-2 remote sensing image. Trans CSAM, 2018, 49(1): 151-156. (in Chinese with English abstract)
[5] 张春兰, 杨贵军, 李贺丽, 汤伏全, 刘畅, 张丽研. 基于随机森林算法的冬小麦叶面积指数遥感反演研究. 中国农业科学, 2018, 51: 855-867.
doi: 10.3864/j.issn.0578-1752.2018.05.005
Zhang C L, Yang G J, Li H L, Tang F Q, Liu C, Zhang L Y. Remote sensing inversion of leaf area index of winter wheat based on random forest algorithm. Sci Agric Sin, 2018, 51: 855-867. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.05.005
[6] 任建强, 吴尚蓉, 刘斌, 陈仲新, 刘杏认, 李贺. 基于Hyperion高光谱影像的冬小麦地上干生物量反演. 农业机械学报, 2018, 49(4): 199-211.
Ren J Q, Wu S R, Liu B, Chen Z X, Liu X R, Li H. Retrieving winter wheat above-ground dry biomass based on hyperion hyperspectral imagery. Trans CSAM, 2018, 49(4): 199-211. (in Chinese with English abstract)
[7] 王利民, 刘佳, 杨玲波, 陈仲新, 王小龙, 欧阳斌. 基于无人机影像的农情遥感监测应用. 农业工程学报, 2013, 29(18): 136-145.
Wang L M, Liu J, Yang L B, Chen Z X, Wang X L, Ou-Yang B. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring. Trans CSAE, 2013, 29(18): 136-145. (in Chinese with English abstract)
[8] Yue J B, Feng H K, Yang G J, Li Z H. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens, 2018, 10: 66.
doi: 10.3390/rs10010066
[9] Fu Y Y, Yang G J, Li Z H, Song X Y, Li Z H, Xu X G, Wang P, Zhao C J. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sens, 2020, 12: 3778.
doi: 10.3390/rs12223778
[10] Liu K, Zhou Q B, Wu W B, Xia T, Tang H J. Estimating the crop leaf area index using hyperspectral remote sensing. J Integr Agric, 2016, 15: 475-491.
doi: 10.1016/S2095-3119(15)61073-5
[11] Shi Y, Wang J, Wang J, Qu Y H. A prior knowledge-based method to derivate high-resolution leaf area index maps with limited field measurements. Remote Sens, 2016, 9: 13.
doi: 10.3390/rs9010013
[12] 陈鹏飞, 孙九林, 王纪华, 赵春江. 基于遥感的作物氮素营养诊断技术: 现状与趋势. 中国科学: 信息科学, 2010, 40(增刊1): 21-37.
Chen P F, Sun J L, Wang J H, Zhao C J. Using remote sensing technology for crop nitrogen diagnosis: status and trends. Sci China (Infor Sci), 2010, 40(S1): 21-37. (in Chinese with English abstract)
[13] Durbha S S, King R L, Younan N H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens Environ, 2007, 107: 348-361.
doi: 10.1016/j.rse.2006.09.031
[14] Liu S B, Jin X L, Bai Y, Wu W B, Cui N B, Cheng M H, Liu Y D, Meng L, Jia X, Nie C W, Yin D M. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int J Appl Earth Obs Geoinf, 2023, 121: 103383.
[15] Yuan H H, Yang G J, Li C C, Wang Y J, Liu J G, Yu, H Y, Feng H K, Xu B, Zhao X Q, Yang X D. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sens, 2017, 9: 309.
doi: 10.3390/rs9040309
[16] Shi Y, Gao Y, Wang Y, Luo D N, Chen S Z, Ding Z T, Fan K. Using unmanned aerial vehicle-based multispectral image data to monitor the growth of intercropping crops in tea plantation. Front Plant Sci, 2022, 13: 820585.
doi: 10.3389/fpls.2022.820585
[17] Zhang Y, Yang J, Liu X, Du L, Shi S, Sun J, Chen B W. Estimation of multi-species leaf area index based on Chinese GF-1 satellite data using look-up table and gaussian process regression methods. Sensors, 2020, 20: 2460.
doi: 10.3390/s20092460
[18] Berger K, Verrelst J, Féret J B, Wang Z H, Wocher M, Strathmann M, Danner M, Mauser W, Hank T. Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens Environ, 2020, 242: 111758.
doi: 10.1016/j.rse.2020.111758
[19] Das B, Manohara K K, Mahajan G R, Sahoo R N. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Spectroch Acta A Mol Biomol Spectr, 2020, 229: 117983.
doi: 10.1016/j.saa.2019.117983
[20] Mahajan G R, Das B, Murgaokar D, Herrmann I, Berger K, Sahoo R N, Patel K, Desai A, Morajkar S, Kulkarni R M. Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models. Remote Sens, 2021, 13: 641.
doi: 10.3390/rs13040641
[21] Xie Q, Huang W, Zhang B, Chen P F, Song X Y, Pascucci S, Pignatti S, Laneve G, Dong Y Y. Estimating winter wheat leaf area index from ground and hyperspectral observations using vegetation indices. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 771-780.
doi: 10.1109/JSTARS.4609443
[22] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance 1. An invertedGaussian reflectance model. Int J Remote Sens, 1990, 11: 1755-1773.
doi: 10.1080/01431169008955128
[23] Schuerger A C, Capelle G A, Di Benedetto J A, Mao C Y, Thai C N, Evans M D, Richards J T, Blank T A, Stryjewski E C. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia grass (Paspalum notatum Flugge.). Remote Sens Environ, 2003, 84: 572-588.
doi: 10.1016/S0034-4257(02)00181-5
[24] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogr Eng Remote Sens, 1977, 43: 1541-1552.
[25] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83: 195-213.
doi: 10.1016/S0034-4257(02)00096-2
[26] Huete A, Justice C, Liu H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ, 1994, 49: 224-234.
doi: 10.1016/0034-4257(94)90018-3
[27] Qi J, Chehbouni A, Huete A R, Keer Y H, Sorooshian S. A modified soil adjusted vegetation index. Remote Sens Environ, 1994, 48: 119-126.
doi: 10.1016/0034-4257(94)90134-1
[28] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 1996, 55: 95-107.
doi: 10.1016/0034-4257(95)00186-7
[29] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156-172.
doi: 10.1016/S0034-4257(00)00197-8
[30] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens Environ, 1996, 58: 289-298.
doi: 10.1016/S0034-4257(96)00072-7
[31] Huete A R. A soil vegetation adjusted index (SAVI). Remote Sens Environ, 1988, 25: 295-309.
doi: 10.1016/0034-4257(88)90106-X
[32] Van Beek J, Tits L, Somers B, Coppin P. Stem water potential monitoring in pear orchards through WorldView-2 multispectral imagery. Remote Sens, 2013, 5: 6647-6666.
doi: 10.3390/rs5126647
[33] Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124: 74-84.
doi: 10.1016/j.fcr.2011.06.007
[34] Daughtry C, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
doi: 10.1016/S0034-4257(00)00113-9
[35] Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ, 2002, 81: 416-426.
doi: 10.1016/S0034-4257(02)00018-4
[36] Haboudane D, Tremblay N, Miller J R, Vigneault P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans Geosci Remote Sens, 2008, 46: 423-437.
doi: 10.1109/TGRS.2007.904836
[37] Han L, Yang G J, Dai H Y, Xu B, Yang H, Feng H K, Li Z H, Yang X D. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 2019, 15: 10.
doi: 10.1186/s13007-019-0394-z pmid: 30740136
[38] Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Envrion, 1995, 51: 375-384.
[39] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 1996, 22: 229-242.
doi: 10.1080/07038992.1996.10855178
[40] Sripada R P, Heiniger R W, White J G, Meijer A D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron J, 2006, 98: 968-977.
doi: 10.2134/agronj2005.0200
[41] Thompson C N, Mills C, Pabuayon I L B, Ritchie G L. Time-based remote sensing yield estimates of cotton in water- limiting environments. Agron J, 2020, 112: 975-984.
doi: 10.1002/agj2.v112.2
[42] Chen P F, Wang J H, Huang W J, Tremblay N, Ou-Yang Z, Zhang Q. Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of shandong province, China. IEEE J Sel Top Appl Earth Observ Remote Sens, 2013, 6: 682-689.
doi: 10.1109/JSTARS.4609443
[43] Farifteh J, Van der Meer F D, Atzberger C, Carranza E J M. Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Envrion, 2007, 110: 59-78.
[44] Rasumssen C E, Williams C K I. Gaussian Process for Machine Learning. New York: The MIT Press, 2006. p 7.
[45] Valdimirn. The Nature of Statistical Learning Theory. New York: Springer, 2000. pp 267-290.
[46] Friedman J. Greedy function approximation: a gradient boosting machine. Ann Stat, 2001, 29: 1189-1232.
doi: 10.1214/aos/1013203450
[47] Wu T A, Zhang W, Wu S Y, Cheng M H, Qi L S, Shao G C, Jiao X Y. Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods. Front Plant Sci, 2023, 13: 1088499.
doi: 10.3389/fpls.2022.1088499
[48] Liu Z J, Guo P J, Liu H, Fan P, Zeng P Z, Liu X Y, Feng C, Wang W, Yang F Z. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing. Remote Sens, 2021, 13: 3263.
doi: 10.3390/rs13163263
[49] Sun X K, Yang Z Y, Su P Y, Wei K X, Wang Z G, Yang C B, Wang C, Qin M X, Xiao L J, Yang W D, Zhang M J, Song X Y, Feng M C. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Front Plant Sci, 2023, 14: 1158837.
doi: 10.3389/fpls.2023.1158837
[50] 马怡茹, 吕新, 易翔, 马露露, 祁亚琴, 侯彤瑜, 张泽. 基于机器学习的棉花叶面积指数监测. 农业工程学报, 2021, 37(13): 152-162.
Ma Y R, Lyu X, Yi X, Ma L L, Qi Y Q, Hou T Y, Zhang Z. Monitoring of cotton leaf area index using machine learning. Trans CSAE, 2021, 37(13): 152-162. (in Chinese with English abstract)
[51] Zhang Z D, Jung C. GBDT-MO: gradient-boosted decision trees for multiple outputs. IEEE Trans Neural Netw Learn Syst, 2021, 32: 3156-3167.
doi: 10.1109/TNNLS.2020.3009776
[52] 王丽爱, 马昌, 周旭东, 訾妍, 朱新开, 郭文善. 基于随机森林回归算法的小麦叶片SPAD值遥感估算. 农业机械学报, 2015, 46(1): 259-265.
Wang L A, Ma C, Zhou X D, Zi Y, Zhu X K, Guo W S. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data. Trans CSAM, 2015, 46(1): 259-265. (in Chinese with English abstract)
[1] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[2] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[3] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[4] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[5] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[6] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[7] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[8] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[9] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[10] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[11] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[12] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[13] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[14] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[15] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .