欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 426-437.doi: 10.3724/SP.J.1006.2023.14251

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

向日葵HaLACS9基因的克隆与功能分析

杨佳宝1(), 张展2, 周至铭1, 吕新华1, 孙黎1,*()   

  1. 1石河子大学生命科学学院, 新疆石河子 832003
    2兵团兴新职业技术学院, 新疆铁门关 841007
  • 收稿日期:2021-12-29 接受日期:2022-06-07 出版日期:2022-07-07 网络出版日期:2022-07-07
  • 通讯作者: 孙黎
  • 作者简介:E-mail: 2516040371@qq.com
  • 基金资助:
    国家自然科学基金项目(31760064);国家自然科学基金项目(31360052)

Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L.

YANG Jia-Bao1(), ZHANG Zhan2, ZHOU Zhi-Ming1, LYU Xin-Hua1, SUN Li1,*()   

  1. 1College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
    2Bingtuan Xingxin Vocational and Technical College, Tiemenguan 841007, Xinjiang, China
  • Received:2021-12-29 Accepted:2022-06-07 Published:2022-07-07 Published online:2022-07-07
  • Contact: SUN Li
  • Supported by:
    National Natural Science Foundation of China(31760064);National Natural Science Foundation of China(31360052)

摘要:

长链酰基CoA合成酶(long-chain acyl-CoA synthetase, LACS)催化游离脂肪酸合成酰基CoA, 在植物脂质代谢中发挥重要作用。本研究从向日葵中筛选并克隆得到1个LACS家族基因HaLACS9, 同源比对表明HaLACS9具有LACS酶的保守结构域, 与拟南芥(Arabidopsis thaliana)、莴苣(Lactuca sativa)和刺菜蓟(Cynara cardunculus) LACS9蛋白具有较高的相似性。亚细胞定位预测HaLACS9定位于叶绿体。HaLACS9启动子区含有多种逆境及激素响应相关元件。qRT-PCR分析表明, HaLACS9在向日葵多个器官中表达, 在花后10 d的种子中优势表达。干旱、盐、外源脱落酸和赤霉素处理均能诱导HaLACS9基因在向日葵根、茎和叶中的表达。分析HaLACS9在向日葵种子发育不同时期的相对表达量发现, HaLACS9在向日葵种仁发育早期高水平表达, 与籽油的快速积累密切相关。随着种子发育和籽油积累速率的减慢, HaLACS9转录水平呈下降趋势。缺陷型酵母互补试验证明HaLACS9具有酰基CoA合成酶活性, 并且油酸是其偏好的催化底物。推测HaLACS9与向日葵种子发育过程中的油脂积累和非生物胁迫响应相关。

关键词: 向日葵, HaLACS9, 表达模式, 酵母功能互补

Abstract:

Long-chain acyl-coenzyme A (CoA) synthetase (LACS) catalyzes the formation of acyl-CoAs from free fatty acids, which plays important roles in lipid metabolism in plant. Here, a LACS family gene named HaLACS9 was screened and cloned from sunflower (Helianthus annuus L.). Homologous protein comparison showed that HaLACS9 had conserved LACS domains and had higher homology with Arabidopsis thaliana, Lactuca sativa, and Cynara cardunculus LACS9 proteins. Subcellular localization prediction indicated that HaLACS9 was localized in the chloroplast. The promoter region of HaLACS9 gene contained a large number of hormone and stress responses related elements. The qRT-PCR revealed that HaLACS9 gene was ubiquitously expressed in sunflower organs, and the highest expressed in seeds at 10 days after flowering. The transcription levels of HaLACS9 were induced by drought, salt, ABA, and GA3 treatments in sunflower roots, stems, and leaves. The relative expression pattern of HaLACS9 at seed developmental stages in sunflower was higher at the early seed developmental stages, related to sunflower seed oil rapid accumulation periods. The relative expression of HaLACS9 was gradually decreased at late stages of seed development and the slow accumulation rate of oil. HaLACS9 was proved to have the synthetase activity of acyl-CoA in complementation test of deficient yeast mutant and prefers to activate oleic acid substrate. It was speculated that HaLACS9 participated in the regulation of sunflower seed lipid biosynthesis and abiotic stress responses.

Key words: sunflower, HaLACS9, expression patterns, yeast complementation

表1

本研究的引物及序列"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Function
HaLACS9-F ATGAGTGCATATATTGTTGGAGTTT 全长cDNA克隆
Full-length cDNA cloning
HaLACS9-R TCAAGACTGGTAGAACTTTTCTAGC
18S rRNA-F CTACCACATCCAAGGAAGGCAG 实时荧光定量PCR
qRT-PCR
18S rRNA-R CGACAGAAGGGACGAGTAAACC
HaLACS9-qRT-F ACTCTCGCCCTTCGGAAATC 实时荧光定量PCR
qRT-PCR
HaLACS9- qRT-R TTTCAAATGCCCTCCCGTCT
pHaLACS9-F GGGGTACCATGAGTGCATATATTGTTGG (Kpn I) pYES2-HaLACS9载体构建
Construction of pYES2-HaLACS9 vector
pHaLACS9-R TGCTCTAGATTAAGACTGGTAGAACTTTT (Xba I)

图1

向日葵HaLACS9的克隆(A)及染色体定位分析(B)"

图2

HaLACS9与同源蛋白的序列比对及序列分析 At: 拟南芥; Ha: 向日葵; Cc: 刺菜蓟; Ps: 山杏; Os: 水稻; Ta: 小麦; Ls: 莴苣。"

图3

不同植物LACS9序列的保守基序分布(A)和保守基序分析(B) At: 拟南芥; Ha: 向日葵; Cc: 刺菜蓟; Ps: 山杏; Os: 水稻; Ta: 小麦; Ls: 莴苣。"

图4

HaLACS9的结构分析 A: HaLACS9的三级结构预测; AMP结合结构域用红色方框表示。B: HaLACS9的信号肽预测。"

图5

HaLACS9与同源蛋白的系统进化树 At: 拟南芥; Ha: 向日葵; Ls: 莴苣; Cc: 刺菜蓟; Si: 芝麻; Rc: 蓖麻; Ps: 山杏; Gm: 大豆; Ah: 花生; Eg: 油棕; Bn: 甘蓝型油菜; Zm: 玉米; Os: 水稻; Ta: 小麦。红三角标记为目的蛋白。"

图6

HaLACS9启动子顺式作用元件分析"

图7

HaLACS9的组织表达分析 不同小写字母表示数值有显著差异(P < 0.05)。"

图8

PEG (A)和NaCl (B)胁迫对HaLACS9相对表达量的影响 不同小写字母表示数值有显著差异(P < 0.05)。"

图9

外源ABA (A)和GA3 (B)处理对HaLACS9相对表达量的影响 不同小写字母表示数值有显著差异(P < 0.05)。"

图10

向日葵种仁不同发育时期HaLACS9相对表达水平和含油量 不同小写字母表示数值有显著差异(P < 0.05)。"

图11

酵母生长状况 不同小写字母表示数值有显著差异(P < 0.05)。"

[1] Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell, 2004, 16: 394-405.
pmid: 14742880
[2] Judy S, Jay S, John B. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16: 629-642.
doi: 10.1105/tpc.017608
[3] Li-Beisson Y, Shorrosh B, Beisson F, Andersson M X, Arondel V, Bates P D, Baud S, Bird D, Debono A, Durrett T P, Franke R B, Graham I A, Katayama K, Kelly A A, Larson T, Markham J E, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid K M, Wada H, Welti R, Xu C C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. Arabidopsis Book, 2013, 11: e0161.
doi: 10.1199/tab.0161
[4] Grevengoed T J, Klett E L, Coleman R A. Acyl-CoA metabolism and partitioning. Annu Rev Nutr, 2014, 34: 1-30.
doi: 10.1146/annurev-nutr-071813-105541 pmid: 24819326
[5] Jessen D, Roth C, Wiermer M, Fulda M. Two activities of long-chain acyl-coenzyme a synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol, 2015, 167: 351-366.
doi: 10.1104/pp.114.250365 pmid: 25540329
[6] Fich E A, Segerson N A, Rose J K C. The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol, 2016, 67: 207-233.
doi: 10.1146/annurev-arplant-043015-111929 pmid: 26865339
[7] Ingram G, Nawrath C. The roles of the cuticle in plant development: organ adhesions and beyond. J Exp Bot, 2017, 68: 5307-5321.
doi: 10.1093/jxb/erx313 pmid: 28992283
[8] Shockey J M, Fulda M S, Browse J A. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol, 2002, 129: 1710-1722.
pmid: 12177484
[9] Lyu S Y, Song T, Kosma D K, Parsons E P, Rowland O, Jenks M A. Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J, 2009, 59: 553-564.
doi: 10.1111/j.1365-313X.2009.03892.x
[10] Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J, 2011, 66: 143-160.
doi: 10.1111/j.1365-313X.2011.04512.x
[11] Schnurr J, Shockey J, Browse J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16: 629-642.
pmid: 14973169
[12] Fulda M, Shockey J, Werber M, Wolter F P, Heinz E. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J, 2002, 32: 93-103.
doi: 10.1046/j.1365-313X.2002.01405.x
[13] Babbitt P C. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl: adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry, 1992, 31: 5594-5604.
pmid: 1351742
[14] Iijima H, Fujino T, Minekura H, Suzuki H, Kang M J, Yamamoto T. Biochemical studies of two rat acyl-CoA synthetases, ACS1 and ACS2. Eur J Biochem, 1996, 242: 186-190.
pmid: 8973631
[15] Steinberg S J, Morgenthaler J, Heinzer A K. Very long-chain acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem, 2000, 275: 35162-35169.
doi: 10.1074/jbc.M006403200 pmid: 10954726
[16] Jessen D, Olbrich A, Knufer J, Kruger A, Hoppert M, Polle A, Fulda M. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J, 2011, 68: 715-726.
doi: 10.1111/j.1365-313X.2011.04722.x
[17] Schnurr J A, Shockey J M, de Boer G J, Browse1 J A. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme a synthetase from Arabidopsis. Plant Physiol, 2002, 129: 1700-1709.
pmid: 12177483
[18] Zhao L F, Katavic V, Li F L, Haughn G W, Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J, 2010, 64: 1048-1058.
doi: 10.1111/j.1365-313X.2010.04396.x
[19] Zhao L F, Haslam T M, Sonntag A, Molina I, Kunst L. Functional overlap of long-chain acyl-CoA synthetases in Arabidopsis. Plant Cell Physiol, 2019, 60: 1041-1054.
doi: 10.1093/pcp/pcz019 pmid: 30715495
[20] Ding L N, Gu S L, Zhu F G, Ma Z Y, Li J, Li M, Wang Z, Tan X L. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biol, 2020, 20: 21.
doi: 10.1186/s12870-020-2240-x pmid: 31931712
[21] Zhang C L, Mao K, Zhou L J, Wang G L, Zhang Y L, Li Y Y, Hao Y J. Genome-wide identification and characterization of apple long-chain acyl-CoA synthetases and expression analysis under different stresses. Plant Physiol Biochem, 2018, 132: 320-332.
doi: 10.1016/j.plaphy.2018.09.004
[22] Zhang C L, Zhang Y L, Hu X, Xiao X, Wang G L, You C X, Li Y Y, Hao Y J. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Sci, 2020, 297: 110529.
doi: 10.1016/j.plantsci.2020.110529
[23] Wang X L, Li X B. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton. Plant J, 2009, 57: 473-486.
doi: 10.1111/j.1365-313X.2008.03700.x
[24] Dyer J M, Stymne S, Green A G, Carlsson A S. High-value oils from plants. Plant J, 2008, 54: 640-655.
doi: 10.1111/j.1365-313X.2008.03430.x
[25] Hryvusevich P, Navaselsky I, Talkachova Y, Straltsova D, Keisham M, Viatoshkin A, Samokhina V, Smolich I, Sokolik A, Huang X, Yu M, Bhatla S C, Demidchik V. Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Front Plant Sci, 2020, 11: 613936.
doi: 10.3389/fpls.2020.613936
[26] Li J J, Liu H, Yang C, Wang J, Yan G J, Si P, Bai Q J, Lu Z Y, Zhou W J, Xu L. Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Ind Crop Prod, 2020, 143: 111924.
doi: 10.1016/j.indcrop.2019.111924
[27] Livak Kenneth J A, Schmittgen Thomas D B. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] Harwood H J. Oleochemicals as a fuel: mechanical and economic feasibility. J Am Oil Chem Soc, 1984, 61: 315-324.
doi: 10.1007/BF02678788
[29] Knoll L J. Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletion with a mammalian acyl-CoA synthetase. J Biol Chem, 1995, 270: 10861-10867.
doi: 10.1074/jbc.270.18.10861 pmid: 7738025
[30] Færgeman N J, Black P N, Zhao X D. The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem, 2001, 276: 37051-37059.
doi: 10.1074/jbc.M100884200
[31] Li H, Melton E M, Quackenbush S, DiRusso C C, Black P N. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1771: 1246-1253.
doi: 10.1016/j.bbalip.2007.05.009 pmid: 17604220
[32] Gietz R D, Schiestl R H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 1-4.
pmid: 17401330
[33] 宋燕子, 贾彬, 林柏成, 胡章立, 黄瑛. 莱茵衣藻酰基辅酶A合成酶cDNA克隆及其酵母表达. 生物技术通报, 2015, 31: 119-124.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.016
Song Y Z, Jia B, Lin B C, Hu Z L, Huang Y. cDNA cloning and yeast expression of acyl-CoA synthetase of Chlamydomonas reinhardtii. Biotechnol Bull, 2015, 31: 119-124. (in Chinese with English abstract)
[34] Aznar-Moreno J A, Venegas Calerón M, Martínez-Force E, Garcés R, Mullen R, Gidda S K, Salas J J. Sunflower (Helianthus annuus) long-chain acyl-coenzyme a synthetases expressed at high levels in developing seeds. Physiol Plant, 2014, 150: 363-373.
doi: 10.1111/ppl.12107 pmid: 24102504
[35] 于莉莉, 谭小力, 侯文胜. 大豆长链脂酰辅酶A合成酶基因GmLACS在酵母中的表达. 大豆科学, 2011, 30: 719-722.
Yu L L, Tan X L, Hou W S. Enzyme activity analysis of GmLACS in Saccharomyces cerevisiae. Soybean Sci, 2011, 30: 719-722. (in Chinese with English abstract)
[36] Chlo G, Thierry J, Julien S, Philippe L, Virginie V, MawussD T A, Thierry B, Dany S, Philippe A, James T, Tristan D G, Fabienne M, Stphane D. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. Plant J, 2016, 87: 423-441.
doi: 10.1111/tpj.13208
[37] Kitajima-Koga A, Baslam M, Hamada Y, Ito N, Taniuchi T, Takamatsu T, Oikawa K, Kaneko K, Mitsui T. Functional analysis of rice long-chain acyl-CoA synthetase 9 (OsLACS9) in the chloroplast envelope membrane. Int J Mol Sci, 2020, 21: 2223.
doi: 10.3390/ijms21062223
[38] McFarlane H E, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels A L. Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol, 2014, 164: 1250-1260.
doi: 10.1104/pp.113.234583 pmid: 24468625
[1] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[3] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[4] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[10] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[11] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[12] 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656.
[13] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[14] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
[15] 吕品,于海峰,于志贤,张永虎,张艳芳,王婷婷,侯建华. 向日葵高密度遗传连锁图谱构建及两种水分条件下芽期性状的QTL分析[J]. 作物学报, 2017, 43(01): 19-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!