欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 755-771.doi: 10.3724/SP.J.1006.2023.22016

• 耕作栽培·生理生化 • 上一篇    下一篇

再生季稻与同期抽穗主季稻干物质分配特性及机制研究

吴冬青1(), 李洲2, 郭春林3, 邹京南1, 庞孜钦3, 林非凡1, 何海斌1, 林文雄1,3,*()   

  1. 1福建农林大学生命科学学院 / 农业生态过程与安全监测福建省重点实验室, 福建福州 350002
    2福建省农业科学院亚热带农业研究所, 福建漳州 363005
    3福建农林大学作物遗传育种与综合利用教育部重点实验室, 福建福州 350002
  • 收稿日期:2022-03-18 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-24
  • 通讯作者: 林文雄
  • 作者简介:E-mail: wudq606@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300508);国家重点研发计划项目(2017YFD0301602);国家重点研发计划项目(2018YFD0301105);闽台种植资源创制与绿色栽培协调创新中心项目(福建2011项目);闽台种植资源创制与绿色栽培协调创新中心项目(2015-75);福建农林大学科技发展基金项目(KF2015043)

Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time

WU Dong-Qing1(), LI Zhou2, GUO Chun-Lin3, ZOU Jing-Nan1, PANG Zi-Qin3, LIN Fei-Fan1, HE Hai-Bin1, LIN Wen-Xiong1,3,*()   

  1. 1College of Life Sciences, Fujian Agriculture and Forestry University / Fujian Province Key Laboratory of Agro-Ecological Process and Safety Monitoring, Fuzhou 350002, Fujian, China
    2Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, Fujian, China
    3Key Laboratory of Crop Genetics and Integrated Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2022-03-18 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-24
  • Contact: LIN Wen-Xiong
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300508);National Key Research and Development Program of China(2017YFD0301602);National Key Research and Development Program of China(2018YFD0301105);Fujian-Taiwan Coordination Innovation Center for Plant Germplasm Creation and Green Cultivation(Fujian 2011 Project);Fujian-Taiwan Coordination Innovation Center for Plant Germplasm Creation and Green Cultivation(2015-75);Fujian Agriculture and Forestry University Science and Technology Development Fund Project(KF2015043)

摘要:

研究再生稻干物质积累与转运特性对深入理解再生稻产量形成的生理机制及进一步挖掘增产潜力有重要的理论与实际意义。本研究以华东南稻区推广的常规籼稻佳辐占和籼粳杂交稻甬优2640两个再生稻品种作为供试材料, 在确保2个供试水稻品种的再生季稻和主季稻在籽粒灌浆阶段处于同一晚秋气温条件下抽穗成熟, 比较再生季稻及其同期抽穗的主季晚稻的光合生理、激素含量、干物质生产、非结构性碳水化合物(NSC)、13C同化物在植株地上部和地下部的干物质积累与分配差异。结果表明, 相比同期抽穗的同基因型主季晚稻, 2个供试品种的再生季稻生育期缩短50%, 但有效穗数和收获指数分别增加50%和10%, 最终产量可达到对照产量的55%~65%; 再生季稻在籽粒灌浆前期叶片光合速率和SPAD值均明显增高, 但齐穗后20 d至成熟期其光合速率和SPAD值则明显降低; 再生季稻株体内的ZR、IAA含量在齐穗期较高, 之后相比较低, 再生季稻株内的ABA含量在齐穗期至齐穗后10 d或20 d较高, 达到10%~20%, 而其GA3含量普遍较低; 再生季稻稻桩、叶片和茎鞘的NSC转运率高达67%~78%、59%~67%和52%~61%, 因此其NSC转运对产量贡献率也分别高达10%~18%; 13C光合同化物分配在穗部占比大, 成熟期再生季稻穗部的分配率高20.83%, 同时, 减少了再生季稻13C同化物向地下部的转移量达5%, 因而有效穗多, 收获指数高。再生季稻减少了光合同化物向根际土壤的转移与分配, 既能提高其收获指数, 又有利于减少水稻的CH4等温室气体排放量, 是一种经济高效益和环境友好型的稻作模式。

关键词: 再生季稻, 13C脉冲标记, 非结构碳水化合物, 干物质积累与分配

Abstract:

It is of great theoretical and practical significance to study the dry matter accumulation and translocation properties of ratoon rice for further understanding the physiological mechanism of yield formation and exploring the potential of yield increase. In this study, two rice varieties, Jiafuzhan (conventional indica rice) and Yongyou 2640 (indica-japonica hybrid rice), popularly planted in Southeast China, were used as the test materials. The ratooning and main rice crops of the two cultivars were regulated to be heading and ripening in the similar temperature condition of late autumn. Differences of photosynthetic physiology, hormone content, dry matter production, NSC translocation, and 13C assimilate in aboveground and underground parts of ratooning rice and its main crop synchronized heading in late season were compared. The results showed that, compared with main crop (late season) synchronized in rice heading time, the growth period of ratooning rice of the two varieties was 50% shorter, but they had 50% increase of effective panicles and 10% increase of harvest indexes, so the final yield could still reach 55%-65% of the control yield; the photosynthetic rate and SPAD value of the ratooning rice at the early stage of grain filling were significantly higher, but they turned to be significantly lower from 20 days after full heading to maturity; the content of ZR and IAA in ratooning rice were higher at the full heading stage, but lower later; the content of ABA in ratooning rice was 10%-20% higher from full heading stage to 10 days or 20 days after full heading, while the content of GA3 in ratooning rice was generally lower; NSC translocation rates of stubble, leaf and stem-sheath of the two tested varieties were as high as 67%-78%, 59%-67%, and 52%-61%, respectively, and the contribution rate of NSC translocation to yield was also as high as 10%-18%, respectively. The distribution rate of 13C photochemical compounds in panicle of ratooning rice at maturity stage was up to 20.83%, and the translocation of 13C assimilates to underground part of ratooning rice was reduced by 5%, resulting in more effective panicles and higher harvest index. Therefore, ratooning rice can reduce translocation and allocation of photoassimilates to rhizosphere soil, improve harvest index, lessen CH4, and other greenhouse gas emissions, which is a high-benefit and environment-friendly rice cropping pattern.

Key words: ratooning season rice, 13C pulse labeling, non-structural carbohydrate, dry matter accumulation and translocation

图1

再生稻全生育期气温和降雨量变化态势"

表1

再生季稻与其同期抽穗的晚稻产量及产量构成因素等性状比较"

品种
Cultivar name
种植模式Cropping pattern 有效穗数
Effective panicles (m-2)
每穗粒数
No. of grains per panicles
结实率
Seed setting percentage (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
收获指数Harvest index (%)
2018 JFZ RCR 442.0±4.9 a 51.0±2.0 a 90.1±1.08 a 23.5±0.24 a 4.77±0.15 Aa 56.9±0.4 a
STLR 276.0±7.8 c 112.0±5.3 b 86.0±1.79 b 27.5±0.30 b 7.31±0.26 Bb 42.7±0.2 b
YY2640 RCR 336.0±10.6 b 112.7±4.4 b 63.7±2.49 c 22.3±0.17 c 5.38±0.10 Cc 53.5±0.2 c
STLR 224.0±7.3 c 293.7±7.5 c 70.6±1.73 c 22.6±0.56 c 10.50 Dd 49.5±0.1 d
2019 JFZ RCR 441.7±8.8 a 49.5±1.2 a 90.3±2.39 a 23.4±0.28 a 4.62±0.13 Aa 55.3±0.1 a
STLR 275.4±3.3 c 111.2±3.1 b 85.6±2.54 b 27.0±0.28 b 7.08±0.20 Bb 50.2±0.2 b
YY2640 RCR 307.0±7.7 b 115.1±6.9 b 82.6±1.31 b 22.6±0.40 c 6.58±0.30 Cc 54.3±0.4 c
STLR 209.1±5.1 c 284.3±10.6 c 80.3±2.42 b 22.2±0.32 c 10.6±0.24 Dd 49.4±0.1 d
自由度DF F-value
年度Year (Y) 1 NS NS NS NS NS NS
品种Cultivar (C) 159.6 8.64** 18.101*** 16.725*** 7.649*** 6.971* NS
种植模式
Cropping system (S)
1 39.661*** 16.891*** NS 7.316* 24.08*** 16.055**
年度×品种Y×C 3 NS 5.49** 13.304*** NS NS NS
年度×种植模式Y×S 3 12.274*** 5.127** NS NS 7.448** 6.181**
品种×种植模式C×S 3 151.952*** 476.76*** 5.68** 9.79*** 31.023*** 6.62**
年度×品种×种植模式
Y×C×S
7 67.566*** 173.042*** 5.838** 3.437* 11.746*** 3.917*

图2

不同种植方式下水稻抽穗和成熟期不同时期叶片净光合速率(NPR)的检测结果 HS、10 DAH、20 DAH、MS分别指抽穗期、齐穗后10 d、齐穗后20 d、成熟期。*在图中代表再生稻和同期抽穗晚稻在抽穗和成熟同一时期的旗叶NPR存在0.05的显著差异水平。缩写同表1。"

图3

不同种植方式下水稻抽穗和成熟期不同时期叶片SPAD的检测结果 *在图中代表再生稻和同期抽穗晚稻在抽穗和成熟同一时期旗叶的SPAD值存在0.05的显著差异水平。缩写同表1和图2。"

表2

不同种植模式水稻后期叶面积指数与剑叶SPAD衰减率变化"

测定指标
Determination index
品种及稻作模式
Cultivar and cropping pattern
孕穗期
Booting
stage
抽穗期
Heading
stage
乳熟期
Milk
stage
成熟期
Maturity
stage
叶面积指数
Leaf area index
JFZ-RCR 1.0±0.10 a 2.10±0.20 a 2.20±0.20 a 2.30±0.40
JFZ-STLR 5.2±0.70 b 4.90±0.02 b 5.80±0.30 b 5.30±0.90
YY2640-RCR 2.4±0.50 a 2.40±0.50 a 2.40±0.50 a 2.40±0.50
YY2640-STLR 4.7±0.80 b 5.30±0.30 b 5.80±0.70 b 6.20±0.90
剑叶SPAD衰减率(降低值/d)
Decay rate of blade SPAD
JFZ-RCR 0.1±0.10 a 0.25±0.08 a 1.16±0.30 a 1.19±0.09
JFZ-STLR 0.1±0.04 a 0.16±0.03 b 0.70±0.07 b 0.87±0.12
YY2640-RCR 0.22±0.08 a 0.24±0.09 a 1.02±0.26 a 1.40±0.11
YY2640-STLR 0.05±0.01 b 0.10±0.08 b 0.59±0.12 b 0.95±0.04
单株叶重
Leaf weight per plant (g plants-1)
JFZ-RCR 10.00±1.77 a 5.30±1.15 a
JFZ-STLR 25.50±1.25 b 14.90±0.56 b
YY2640-RCR 15.10±1.87 a 7.90±1.85 a
YY2640-STLR 26.10±0.65 b 20.9±0.75 b

图4

不同种植模式下水稻根、茎、叶和穗部器官中激素含量的差异 缩写同表1和图2。不同小写字母表示在0.05水平差异显著。"

表3

不同种植模式下水稻灌浆抽穗至成熟期间单株穗重与叶绿素SPAD、激素含量、干物质转运量等相关"

项目
Item
单株穗重
Panicle weight per plant
(g plant-1)
玉米素核苷
ZR
(μg g-1 FW)
赤霉素
GA3
(μg g-1 FW)
脱落酸
ABA
(μg g-1 FW)
生长素
IAA
(μg g-1 FW)
叶绿素SPAD值
SPAD value
转运量
Translocation amount
(g plant-1)
运转率
Translocation rate
(%)
单株穗重
Panicle weight per plant
(g plant-1)
1 -0.401 -0.667 0.612 -0.412 -0.411 0.800* 0.402
玉米素核苷
ZR (μg g-1 FW)
1 0.821* -0.711* 0.970** 0.990** -0.760* -1.000**
赤霉素GA3 (μg g-1 FW) 1 -0.975** 0.821* 0.821* -0.975** -0.821
脱落酸ABA (μg g-1 FW) 1 -0.700* -0.890* 1.000** 0.760*
生长素IAA (μg g-1 FW) 1 1.000** -0.770* -1.000**
叶绿素SPAD值
SPAD value
1 -0.760* -1.000**
转运量
Translocation amount
(g plant-1)
1 0.788*
运转率
Translocation rate (%)
1

表4

不同水稻种植模式抽穗期后水稻植株干物质转运特性"

年度
Year
品种
Cultivar
种植模式
Cropping pattern
干物质转运量
Translocation amount of
dry matter (kg hm-2)
干物质转运率
Translocation rate of
dry matter (%)
干物质贡献率
Contribution rate of
dry matter (%)
齐穗后干物质贡献率
Contribution rate of dry matter after full heading stage (%)
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
稻桩
Stubble
茎鞘
Stem-sheath
叶片
Leaf
2018 JFZ RCR 204.2 781.7 c 261.1 b 12.6 17.6 b 25.2 b 2.7 12.6 b 7.8 b 76.9 b
STLR 526.0 bc 254.8 b 7.9 c 9.6 d 8.5 c 4.1 c 87.4 a
YY2640 RCR 245.6 703.0 a 446.3 a 20.0 21.3 a 26.8 a 5.1 14.6 a 9.3 a 71.0 c
STLR 584.8 b 437.4 a 6.6 c 12.5 c 6.3 d 4.7 c 89.0 a
2019 JFZ RCR 246.3 819.4 ab 237.6 c 18.7 27.0 a 30.2 a 5.6 18.6 a 5.4 a 70.4 c
STLR 666.2 b 232.7 c 11.0 c 14.7 c 11.5 b 4.0 c 84.5 b
YY2640 RCR 269.6 941.6 a 321.4 b 16.2 23.4 b 28.4 b 4.7 16.6 a 5.6 a 73.1 c
STLR 684.0 b 396.4 a 7.8 d 12.3 d 7.7 c 4.5 b 87.8 a

表5

不同种植模式下水稻茎鞘叶可溶性糖、淀粉和非结构性碳水化合物积累与分配特性"

品种
Cultivar
稻作
模式
Cropping pattern
可溶性糖含量
Content of soluble sugars (g plant-1)
淀粉含量
Content of starches (g plant-1)
NSC含量
Content of NSC (g plant-1)

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain

Root
茎鞘
Stem-sheath

Leaf
稻桩
Stubble
籽粒
Grain
齐穗期 Full heading stage
JFZ RCR 0.57 c 2.14 b 0.44 d 0.43 a 0.25 c 0.67 b 2.38 d 0.32 c 0.52 b 0.02 d 1.24 c 4.52 c 0.76 d 0.95 a 0.27 c
STLR 1.65 a 2.62 b 0.72 c 0.26 c 1.22 a 5.66 b 0.53 b 0.05 c 2.87 a 8.28 ab 1.25 c 0.31 c
YY2640 RCR 0.86 b 2.42 b 1.03 b 0.34 b 0.26 c 0.66 b 4.25 c 0.85 ab 0.82 a 0.02 d 1.52 c 6.67 bc 1.88 b 1.16 a 0.28 c
STLR 1.35 ab 3.93 a 1.56 a 1.06 a 1.22 a 6.82 a 1.15 a 0.07 b 2.57 a 10.75 a 2.71 a 1.13 a
成熟期 Maturity stage
JFZ RCR 0.27 c 0.98 d 0.16 d 0.09 b 1.02 a 0.18 cd 1.18 c 0.19 c 0.12 b 17.22 c 0.45 c 2.16 c 0.35 d 0.21 b 18.24 c
STLR 1.08 a 3.22 a 0.64 c 0.58 b 0.67 a 2.59 a 0.33 b 28.51 b 1.75 a 5.81 a 0.97 b 29.09 b
YY2640 RCR 0.49 b 1.51 c 0.23 d 0.18 a 1.17 a 0.26 c 1.07 c 0.39 b 0.20 a 26.62 b 0.75 b 2.58 c 0.62 c 0.38 a 27.79 b
STLR 1.13 a 3.18 a 1.07 b 0.80 ab 0.59 ab 2.88 a 0.75 a 41.58 a 1.72 a 6.06 a 1.82 a 42.38 a

表6

不同种植模式下成熟期水稻茎鞘叶可溶性糖、淀粉和非结构性碳水化合物转运特性"

品种
Cultivar
稻作模式
Cropping Pattern
NSC转运量
Translocation amount of NSC (g plant-1)
NSC转运率
Translocation rate of NSC (%)
NSC转运对产量贡献率
Contribution rate of NSC translocation to production (%)

Root
茎鞘
Stem-sheath

Leaf

Stubble

Root
茎鞘
Stem-sheath

Leaf

Stubble
茎鞘
Stem-sheath

Leaf

Stubble
JFZ RCR 0.79 b 2.36 d 0.41 c 0.74 a 63.71 a 52.21 b 58.73 b 77.89 a 12.93 ab 2.24 b 4.05 a
STLR 1.12 a 2.47 d 0.28 d 39.02 c 29.83 d 22.40 d 8.49 c 0.96 d
YY2640 RCR 0.77 bc 4.09 b 1.26 a 0.78 a 50.65 b 61.31 a 67.02 a 67.02 a 14.71 a 4.43 a 2.81 b
STLR 0.85 b 4.69 a 0.89 b 33.07 d 43.62 c 32.84 c 11.06 b 2.10 b

表7

不同水稻种植模式下水稻不同器官和土壤中的13C同化物含量"

品种
Cultivar
分配部位
Allocated part
齐穗期含量
Contents at full heading stage
(mg pot-1)
成熟期含量
Contents at maturity stage
(mg pot-1)
同品种成熟和齐穗期含量差异
The content difference of the same accessions at maturity and full heading stages (mg pot-1)
RCR STLR RCR STLR RCR STLR
JFZ 13C-土壤 13C-soil 4.87 Ecd* 0.40 d 3.02 Cbc 2.75 Cc -1.84 Db 2.35 Db*
13C-根系 13C-roots 1.54 Ed 2.66 Ed* 0.44 Cc 4.33 Cc* -1.10 Db 1.67 Db*
13C-稻桩 13C-stubbles 4.11 Ecd 1.30 Cc -2.82 Db
13C-茎鞘 13C-stem-sheath 38.57 EAb* 34.42 Ab 9.31 Bb 20.95 Ab* -29.25 Ac -13.46 Ad*
13C-叶 13C-leaves 6.30 Ec 7.73 Ec* 3.33 Cc 5.36 Cc* -2.97 Db -2.36 Dc
13C-穗 13C-panicles 70.25 Ba* 48.35 Ba 102.26 Aa* 60.97 Ba 32.01 Aa* 12.62 Aa
YY2640 13C-土壤 13C-soil 3.35 Ec* 0.41 Ed 2.36 Cc* 1.30 Cc -0.99 Db 0.89 Db*
13C-根系 13C-roots 0.97 Ec 1.41 Ed 0.30 Cc 2.74 Cc* -0.68 Db 1.34 Db*
13C-稻桩 13C-stubbles 2.04 Ec 0.91 Cc -1.13 Db
13C-茎鞘 13C-stem-sheath 19.12 Db 20.53 Db* 9.13 Bb 16.39 Bb* -9.99 Cc -4.13 Cc*
13C-叶 13C-leaves 3.00 Ec 9.95 Ec* 1.88 Cc 4.05 Cc* -1.12 Db* -5.89 Cd
13C-穗 13C-panicles 89.07 Ca* 62.77 Ca 104.93 Aa* 70.22 Ba 15.87 Ba* 7.46 Ba

表8

不同水稻种植模式下13C同化物在水稻不同器官和土壤中的分配率"

品种
Cultivar
分配部位
Allocated part
齐穗后10 d 分配率
Distribution rate at 10 days after full heading (%)
成熟期分配率
Distribution rate at
maturity stage (%)
同品种成熟和齐穗期分配差异
The distribution difference of the same accessions at maturity and full heading stages (%)
RCR STLR RCR STLR RCR STLR
JFZ 13C-土壤 13C-soil 3.88 Dc* 0.43 De 2.53 Bc 2.92 Ce* -1.35 Cbc 2.49 Bb*
13C-根系 13C-roots 1.22 Dd 2.85 Dd* 0.37 Be 4.59 Cd* -0.86 Cb 1.74 Bb*
13C-稻桩 13C-stubbles 3.27 Dc 1.08 Bd -2.19 Cc
13C-茎鞘 13C-stem-sheath 30.81 Cb 36.81 Cb* 7.83 Bb 22.24 Bb* -22.98 Ad -14.56 Ad*
13C-叶 13C-leaves 5.01 Dc 8.26 Dc* 2.78 Bc 5.68 Cc* -2.23 Cc -2.58 Bc
13C-穗 13C-panicles 55.88 Aa* 51.70 Aa 85.45 Aa* 64.62 Aa 29.57 Aa* 12.93 Aa
YY2640 13C-土壤 13C-soil 2.85 Dc* 0.43 Dd 1.98 Bc* 1.37 Ce -0.87 Cbc 0.94 Bb*
13C-根系 13C-roots 0.83 Df 1.48 Dd* 0.25 Bf 2.90 Cd* -0.58 Cb 1.41 Bb*
13C-稻桩 13C-stubbles 1.74 De 0.77 Be -0.97 Cc
13C-茎鞘 13C-stem-sheath 16.27 Cb 21.75 Cb* 7.65 Bb 17.36 Bb* -8.62 Bd -4.39 Bc*
13C-叶 13C-leaves 2.55 Dd 10.48 Dc* 1.57 Bd 4.28 Cc* -0.98 Cc* -6.20 Bd
13C-穗 13C-panicles 75.77 Ba* 65.97 Ba 87.79 Aa* 74.13 Aa 12.02 Ba* 8.16 Aa
[1] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
doi: 10.16819/j.1001-7216.2019.8078
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in Central China. Chin J Rice Sci, 2019, 33: 47-56. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2019.8078
[2] 黄锦文, 吴珈谊, 陈鸿飞, 张志兴, 方长旬, 邵彩虹, 林伟伟, 翁佩莹, 林文雄. 头季稻氮肥运筹对再生稻根际机能及产量的影响. 中国水稻科学, 2021, 35: 383-395.
doi: 10.16819/j.1001-7216.2021.200603
Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Lin W X. Nitrogen fertilizer management for main crop rice and its carrying-over effect on rhizosphere function and yield of ratoon rice. Chin J Rice Sci, 2021, 35: 383-395. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.200603
[3] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23: 392-401.
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin J Eco-Agric, 2015, 23: 392-401. (in Chinese with English abstract)
[4] Lin W X. Developmental status and problems of rice rationing. J Integr Agric, 2019, 18: 246-247.
doi: 10.1016/S2095-3119(19)62568-2
[5] Zheng C, Wang Y C, Yuan S, Xiao S, Sun Y T, Huang J L, Peng S B. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice rationing system. Crop J, 2022, 10: 280-285.
doi: 10.1016/j.cj.2021.06.003
[6] 易镇邪, 屠乃美, 陈平平. 杂交稻新组合再生稻头季及再生季源库特征分析. 中国水稻科学, 2005, 19: 243-248.
Yi Z X, Tu N M, Chen P P. Source-sink characteristics of main crop and ratooning rice of several new hybrid rice combinations. Chin J Rice Sci, 2005, 19: 243-248. (in Chinese with English abstract)
[7] 朱校奇, 邓启云, 陈春光, 龙世平, 尹文雅, 庄文. 超级杂交稻再生稻和主季稻源库关系比较. 亚热带农业研究, 2009, 5(2): 73-78.
Zhu X Q, Deng Q Y, Chen C G, Long S P, Yin W Y, Zhuang W. Comparison on source-sink relationship of ratooning rice and main crop of super hybrid rice. Subtrop Agric Res, 2009, 5(2): 73-78. (in Chinese with English abstract)
[8] 易镇邪, 周文新, 秦鹏, 屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究. 作物学报, 2009, 35: 140-148.
Yi Z X, Zhou W X, Qin P, Tu N M. Differences in characteristics of source, sink, and flow between ratooning rice and its same-term heading main-crop rice. Acta Agron Sin, 2009, 35: 140-148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00140
[9] Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Khan M U, Lin W X. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in southeast China. J Integr Agric, 2022, 21: 2-15.
[10] Huang J W, Pan Y P, Chen H F, Zhang Z X, Fang C X, Shao C H, Amjad H, Lin W W, Lin W X. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962
[11] He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L X. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Res, 2019, 236: 155-164.
doi: 10.1016/j.fcr.2019.04.001
[12] 谢华安. 超级稻作再生稻高产栽培特性的研究. 杂交水稻, 2010, 25(增刊1): 17-26.
Xie H A. Studies on high-yielding cultivation characteristics of super hybrid rice grown as ratoon rice. Hybrid Rice, 2010, 25(S1): 17-26. (in Chinese)
[13] 张上守, 卓传营, 姜照伟, 李义珍, 郭聪华. 超高产再生稻产量形成和栽培技术分析. 福建农业学报, 2003, (1): 1-6.
Zhang S S, Zhuo C Y, Jiang Z W, Li Y Z, Guo C H. Yield formation and cultivation techniques in super high-yielding ratoon rice. Fujian J Agric Sci, 2003, (1): 1-6 (in Chinese with English abstract).
[14] 张海峰, 黄育民, 林文, 李义珍. 再生稻的光合作用和物质生产. 福建稻麦科技, 1991, (4): 41-45.
Zhang H F, Huang Y M, Lin W, Li Y Z. Photosynthesis and material production in ratoon rice. Fujian Rice Wheat Technol, 1991, (4): 41-45. (in Chinese)
[15] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 111-114.
Zou Q. Experimental Guidance in Plant Physiology. Beijing: China Agriculture Press, 2000. pp 111-114. (in Chinese)
[16] 陈远平, 杨文钰. 卵叶韭休眠芽中GA3I、AA、ABA和 ZT的高效液相色谱法测定. 四川农业大学学报, 2005, (4): 498-500.
Chen Y P, Yang W Y. Determination of GA3I, AA, ABA and ZT in dormant buds of allium ovalifolium by HPLC. J Sichuan Agric Univ, 2005, (4): 498-500. (in Chinese with English abstract)
[17] 李洲. 低留桩再生稻产量形成的生理生态研究. 福建农林大学博士学位论文, 福建福州, 2020.
Li Z. Study on Physioecological Mechanism of Yield Formation of Ratooning Rice Generated from Low Stubbles of Main Crop. PhD Dissertation of Fujian Agricultural and Forestry University, Fuzhou, Fujian, China, 2020. (in Chinese with English abstract)
[18] Yang J, Zhang J. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223-236.
doi: 10.1111/j.1469-8137.2005.01597.x pmid: 16411926
[19] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ, 2010, 26: 1621-1631.
doi: 10.1046/j.1365-3040.2003.01081.x
[20] Harrell D L, Bond J A, Blanche S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res, 2009, 114: 396-403.
doi: 10.1016/j.fcr.2009.09.011
[21] 刘爱中, 邹冬生, 屠乃美, 刘飞. 留桩高度对再生稻生长发育及产量的影响. 安徽农业科学, 2007, 35: 5120-5121.
Liu A Z, Zou D S, Tu N M, Liu F. Effect of stubble height on growth and yield of ratooning rice. J Anhui Agric Sci, 2007, 35: 5120-5121. (in Chinese with English abstract)
[22] 熊绪穰. 谈谈再生稻的桩高问题. 杂交水稻, 1995, (3): 45.
Xiong X R. A discussion on the stubble height of ratoon rice. Hybrid Rice, 1995, (3): 45. (in Chinese)
[23] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响. 中国水稻科学, 2009, 23: 509-516.
doi: 10.3969/j.issn.10017216.2009.05.10
Yi Z X, Zhou W X, Tu N M. Effects of stubble height of the main crop on source-sink characteristics and assimilates transportation in ratooning rice. Chin J Rice Sci, 2009, 23: 509-516. (in Chinese with English abstract)
[24] Daliri M S, Eftekhari A, Mobasser H R, Tari D B, Porkalhor H. Effect of cutting time and cutting height on yield and yield components of ratoon rice (Tarom Langrodi Variety). Asian J Plant Sci, 2009, 8: 89-91.
doi: 10.3923/ajps.2009.89.91
[25] Yazdpour H, Shahri M M, Soleymani A, Shahrajabian M H. Effects of harvesting time and harvesting height on grain yield and agronomical characters in rice ratoon (Oryza sativa L.). J Food Agric Environ, 2012, 10: 438-440.
[26] 王嘉佳, 唐中华. 可溶性糖对植物生长发育调控作用的研究进展. 植物学研究, 2014, 3(3): 71-76.
Wang J J, Tang Z H. The regulation of soluble sugars in the growth and development of plants. Bot Res, 2014, 3(3): 71-76. (in Chinese with English abstract)
[27] 周驰燕, 李国辉, 许轲, 郭保卫, 戴其根, 霍中洋, 魏海燕, 张洪程. 水稻茎鞘非结构性碳水化合物转运机理及栽培调控研究进展. 生命科学, 2021, 33: 111-120.
Zhou C Y, Li G H, Xu K, Guo B W, Dai Q G, Huo Z Y, Wei H Y, Zhang H C. Advances in translocation mechanism and cultivation regulation of nonstructural carbohydrate in rice stem and sheath. Chin Bull Life Sci, 2021, 33: 111-120. (in Chinese with English abstract)
[28] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究. 作物学报, 2021, 47: 2278-2289.
doi: 10.3724/SP.J.1006.2021.02070
Huang S H, Lin X Y, Lei Z P, Ding Z S, Zhao M. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability. Acta Agron Sin, 2021, 47: 2278-2289. (in Chinese with English abstract)
[29] 杨东, 陈鸿飞, 卓传营, 林文雄. 头季不同施氮方式对再生稻生理生化的影响. 中国生态农业学报, 2009, 17: 643-646.
Yang D, Chen H F, Zhuo C Y, Lin W X. Effect of different N application modes in the first cropping rice on the physiobiochemistry of the first cropping rice and its ratoon rice. Chin J Eco-Agric, 2009, 17: 643-646. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2009.00643
[30] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717. (in Chinese with English abstract)
[31] Yu S M, Lo S F, Ho T H D. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015, 20: 844-856.
doi: 10.1016/j.tplants.2015.10.009
[32] Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y, Zhong D, Jansson C, Wang F, Schnurer A, Sun C. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 2015, 523: 602-606.
doi: 10.1038/nature14673
[33] Firous S, Nikkhah A, Aminpanah H. Rice single cropping or ratooning agro-system: which one is more environment-friendly. Environ Sci Poll Res, 2018, 25: 32246-32256.
doi: 10.1007/s11356-018-3076-x
[34] 张浪, 徐华勤, 李林林, 陈元伟, 郑华斌, 唐启源, 唐剑武. 再生稻和双季稻田CH4排放对比研究. 中国农业科学, 2019, 52: 2101-2113.
Zhang L, Xu H Q, Li L L, Chen Y W, Zheng H B, Tang Q Y, Tang J W. Comparative study on CH4emission from ratoon rice and double-cropping rice fields. Sci Agric Sin, 2019, 52: 2101-2113. (in Chinese with English abstract)
[35] 邓桥江, 曹凑贵, 李成芳. 不同再生稻栽培模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2019, 38: 1373-1380.
Deng J Q, Cao C G, Li C F. Effects of different ratooning cultivation modes on greenhouse gas emissions and grain yields in paddy fields. J Agro-Environ Sci, 2019, 38: 1373-1380. (in Chinese with English abstract)
[36] 林志敏, 李洲, 翁佩莹, 吴冬青, 邹京南, 庞孜钦, 林文雄. 华东南再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022.
Lin Z M, Li Z, Weng P Y, Wu D Q, Zou J N, Pang Z Q, Lin W X. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice in southeast China. Chin J Appl Ecol, 2022. (in Chinese with English abstract)
[37] Denier van der gon H A C, Kropff M J, Van Breemen N, Wassmann R, Lantin R S, Aduna E, Corton T M, Van Laar H H. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci USA, 2002, 99: 12021-12024.
pmid: 12189212
[1] 邹晓霞, 蔺益民, 赵亚飞, 刘燕, 刘娟, 王月福, 王维华. 施钙量对不同花生荚果发育时期光合碳在植株-土壤系统分配的影响[J]. 作物学报, 2023, 49(1): 239-248.
[2] 林祥,王东*. 不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响[J]. 作物学报, 2017, 43(09): 1357-1369.
[3] 郭增江,于振文,石玉,赵俊晔,张永丽,王东. 不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响[J]. 作物学报, 2014, 40(04): 731-738.
[4] 高春华,于振文,石玉,张永丽,赵俊晔. 测墒补灌条件下高产小麦品种水分利用特性及干物质积累和分配[J]. 作物学报, 2013, 39(12): 2211-2219.
[5] 段文学,于振文,石玉,张永丽,赵俊晔. 施氮深度对旱地小麦耗水特性和干物质积累与分配的影响[J]. 作物学报, 2013, 39(04): 657-664.
[6] 郑成岩, 崔世明, 王东, 于振文, 张永丽, 石玉. 土壤耕作方式对小麦干物质生产和水分利用效率的影响[J]. 作物学报, 2011, 37(08): 1432-1440.
[7] 刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响[J]. 作物学报, 2011, 37(07): 1301-1307.
[8] 骆兰平, 于振文*, 王东, 张永丽, 石玉. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响[J]. 作物学报, 2011, 37(06): 1049-1059.
[9] 韩占江,于振文,王东,张永丽. 测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响[J]. 作物学报, 2010, 36(3): 457-465.
[10] 赵斌, 董树亭, 张吉旺, 刘鹏. 控释肥对夏玉米产量和氮素积累与分配的影响[J]. 作物学报, 2010, 36(10): 1760-1768.
[11] 郑成岩;于振文;马兴华;王西芝;白洪立. 高产小麦耗水特性及干物质的积累与分配[J]. 作物学报, 2008, 34(08): 1450-1458.
[12] 胡宏标;张文静;陈兵林;王友华;束红梅;周治国. 棉铃对位叶C/N的变化及其与棉铃干物质积累和分配的关系[J]. 作物学报, 2008, 34(02): 254-260.
[13] 李木英;石庆华;潘晓华;张荣珍;谭雪明. 两系稻结实期胚乳和茎鞘非结构碳水化合物代谢活性的研究[J]. 作物学报, 2002, 28(06): 821-828.
[14] 廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究[J]. 作物学报, 2002, 28(01): 52-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .