作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2211-2219.doi: 10.3724/SP.J.1006.2013.02211

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 1 山东农业大学农业部作物生理生态与栽培重点开放实验室,山东泰安 271018;2 德州农业科学院,山东德州 253051;  3 中国农业科学院农业信息研究所,北京 100081
  • 收稿日期:2013-03-26 修回日期:2013-07-25 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 石玉, E-mail: shiyu@sdau.edu.cn, Tel: 0538-8241484
  • 基金资助:

    本研究由国家自然科学基金项目(31171498),山东省自然科学基金项目(ZR2011CQ014),高等学校博士学科点专项科研基金(新教师类) (20123702120014)和山东农业大学博士基金项目资助。

Characteristics of Water Use and Dry Matter Accumulation and Distribution in Different High-yielding Wheat Cultivars under Supplemental Irrigation Based on Soil Moisture

GAO Chun-Hua1,2,YU Zhen-Wen1,SHI Yu1,*,ZHANG Yong-Li1,ZHAO Jun-Ye3   

  1. 1 Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Shandong Agricultural University, Tai’an 271018, China; 2 Academy of Agricultural Sciences of Dezhou City, Dezhou 253051, China; 3 Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  • Received:2013-03-26 Revised:2013-07-25 Published:2013-12-12 Published online:2013-09-29


2007—2009年连续2个小麦生长季,利用测墒补灌技术,设置0~140 cm土壤相对含水量(拔节期65%, 开花期55%~60%)、中(拔节期75%, 开花期65%~70%)、高(拔节期75%, 开花期75%) 3个处理,比较了14个小麦生产品种的水分利用特性及干物质积累和分配的差异。小麦籽粒产量和水分利用率为指标的聚类分析,将14个小麦品种分为3组,分别是超高产高水分利用率组(I)、超高产中水分利用率组(II)和高产低水分利用率组(III)。比较各组代表品种的耗水量、耗水模系数及日耗水量,播种至拔节期山农15 (I)显著低于济麦22 (II)和烟农21 (III),拔节至开花期山农15显著高于济麦22和烟农21,开花至成熟期品种间无显著差异。在中水分条件下,山农15的土壤贮水消耗量及其占总耗水量的比例显著高于济麦22和烟农21,而在低和高水分条件下,3个品种无显著差异。在中、高水分条件下,山农15开花期的干物质积累量显著高于济麦22和烟农21,成熟期与济麦22无显著差异,但显著高于烟农21;营养器官开花前贮藏同化物向籽粒的转运量和转运率及对籽粒的贡献率均显著高于济麦22和烟农213品种的经济系数以山农15最大,济麦22次之,烟农21最小。

关键词: 测墒补灌, 产量, 水分利用率, 干物质积累与分配


Water shortage is a serious problem threatening sustainable agricultural development in the North China Plain, where winter wheat (Triticum aestivum L.) is the largest water-consuming crop. The objective of this study was to guide wheat production in this area by selecting high water efficient cultivar and improving irrigation regime. In a two-year field experiment from autumn of 2007 to summer of 2009, irrigation quantum was controlled based on testing soil moisture (SM) in 0–140 cm depth, which was designed in low (SM of 65% at jointing and 55–60% at anthesis stage), medium (SM of 75% at jointing and 65–70% at anthesis stage), and high (SM of 75% at jointing and 75% at anthesis stage) levels. Water use efficiency (WUE), dry matter accumulation and distribution in wheat plant, and grain yield were tested and compared among 14 commercial cultivars. Based on grain yield and WUE, the 14 cultivars were clustered into three groups, namely, super-high yield and high WUE group (I), super-high yield and medium WUE group (II), and high yield and low WUE group (III). One representative cultivar was selected from each group to compare the amount and proportion of water consumption during sowing–jointing, jointing–anthesis, and anthesis–maturity periods. Shannong 15 from group I had significantly lower water consumption from sowing to jointing than Jimai 22 from group II and Yannong 21 from group III, and significantly higher water consumption from jointing to anthesis. However, water consumption amount and proportion had no significant differences among the three cultivars from anthesis to maturity. Under medium SM condition, soil water consumption in Shannong 15 was significantly higher than that in Jimai 22 and Yannong 21, but such advantage in Shannong 15 disappeared under high SM condition. Under medium and high SM conditions, translocation amount and ratio of dry matter accumulated before anthesis and its contribution to grain were significantly higher in Shannong 15 than in Jimai 22 and Yannong 21. Among the three cultivars, harvest index was the highest in Shannong 15, the medium in Jimai 22, and the lowest in Yannong 21.

Key words: Irrigation based on testing soil moisture, Yield, Water use efficiency, Dry matter accumulation and distribution

[1]Liu B-C(刘布春), Mei X-R(梅旭荣), Li Y-Z(李玉中), Yang Y-L(杨有禄). The connotation and extension of agricultural water resources security. Sci Agric Sin (中国农业科学), 2006, 39(5): 947–951 (in Chinese with English abstract)

[2]Kang S-Z(康绍忠), Hu X-T(胡笑涛), Cai H-J(蔡焕杰), Feng S-Y(冯绍元). New ideas and development tendency of theory for water saving in modern agriculture and ecology. J Hydraulic Eng (水利学报), 2004, 12: 1–7 (in Chinese with English abstract)

[3]Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric Water Manag, 2006, 85: 211–218

[4]Rajala A, Hakala K, Mäkelä P, Muurinen S, Peltonen-Sainio P. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res, 2009, 114: 263–271

[5]Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag, 2003, 63: 37–56

[6]Men H-W(门洪文), Zang Q(张秋), Dai X-L(代兴龙), Cao Q(曹倩), Wang C-Y(王成雨), Zhou X-H(周晓虎), He M-R(贺明荣). Effects of different irrigation modes on winter wheat grain yield and water-and nitrogen use efficiency. Chin J Appl Ecol (应用生态学报), 2011, 22(10): 2517–2523 (in Chinese with English abstract)

[7]Zhi H-M(支虎明), Liu J-H(刘建华). Influence of limited supplemental irrigation at different periods (stages) on wheat yield, water use efficiency and economic efficiency. Chin Agric Sci Bull (中国农学通报), 2011, 27(9): 314–319 (in Chinese with English abstract)

[8]Virgona J W, Barlow E W R. Drought stress induces changes in the nonstructural carbohydrate composition of wheat system. Aust J Physiol, 1989, 18: 239–247

[9]Zhang Y-Q(张雅倩), Lin Q(林琪), Jiang W(姜雯), Liu Y-G(刘义国), Li L-Y(李玲燕). Drought-resistance characteristics of different fertilizer and water types of wheat under water stress. Acta Agric Boreali-Sin (华北农学报), 2010, 25(6): 205-210 (in Chinese with English abstract)

[10]Rizza F, Badeck F W, Cattivelli L, Lidestri O, Fonzo N D, Stanca A M. Use of a water stress index to identify barley genotypes adapted to rained and irrigated conditions. Crop Sci, 2004, 44: 2127–2137

[11]Shao H B, Liang Z S, Shao M G, Sun S M, Hu Z M . Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficit. Colloids Surfaces B: Biointerfaces, 2005, 43: 221–227

[12]Dong B-D(董宝娣), Zhang Z-B(张正斌), Liu M-Y(刘孟雨), Zhang Y-Z(张依章), Li Q-Q(李全起), Shi L(石磊), Zhou Y-T(周永田). Water use characteristics of different wheat varieties and their responses to different irrigation schedulings. Trans CSAE(农业工程学报), 2007, 23(9): 27–33 (in Chinese with English abstract)

[13]Liu W-D (刘万代), Yin J (尹钧), Zhu G-J (朱高纪). Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Sci Agric Sin (中国农业科学), 2007, 40(7): 1353–1360 (in Chinese with English abstract)

[14]Dai Z-M (戴忠民), Wang Z-L (王振林), Gao F-J (高凤菊), Li W-Y (李文阳), Yan S-H (闫素辉), Cai R-G (蔡瑞国), Zhang M (张敏), Yin Y-P (尹燕枰). Characterization of starch accumulation and activities of enzymes involved in starch synthesis in grains of wheat cultivars differing in spike types field-grown in irrigation and rainfed conditions. Acta Agron Sin (作物学报), 2007, 33(4): 682–685 (in Chinese with English abstract)

[15]Dong B-D(董宝娣), Shi C-H(师长海), Qiao Y-Z(乔匀周), Yang J(杨静), Zhai H-M(翟红梅), Li D-X(李东晓), Liu M-Y(刘孟雨). Analysis of water use efficiency of different winter wheat cultivars under different irrigation schemes on the basis of yield. Chin J Eco-Agric (中国生态农业学报), 2011, 19(5): 1096–1103 (in Chinese with English abstract)

[16]Luo H-Y(骆洪义), Ding F-J(丁方军). Laboratory Guide for Pedology (土壤学实验). Chengdu: Chengdu Science and Technology University Press, 1995. p 91(in Chinese)

[17]Shan L(山仑), Kang S-Z(康绍忠), Wu P-T(吴普特).Water-Saving Agriculture in China (中国节水农业). Beijing: China Agriculture Press, 2004. pp 229–230 (in Chinese)

[18]Tao Y-F(陶毓汾), Wang L-X(王立祥), Han S-F(韩仕峰). Water Production Potential and Development of Dryland Field in Northern China(中国北方旱农地区水分生产潜力与开发). Beijing: China Meteorological Press, 1993. pp 63–157(in Chinese)

[19]Despo K P, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J, 1991, 83: 864–870

[20]Hussain G, Al-Jaloud A A. Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agric Water Manag, 1995, 27: 143–53

[21]Han Y-L(韩燕来), Jie X-D(介晓磊), Tan J-F(谭金芳), Guo T-C(郭天财), Zhu Y-J(朱云集), Wang C-Y(王晨阳), Xia G-J(夏国军), Liu Z(刘征). Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agron Sin (作物学报), 1998, 24(6): 908−915 (in Chinese with English abstract)

[22]Yang J C, Zhang J H, Huang Z L, Zhu Q S, Wang L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci, 2000, 40: 1645–1655

[23]Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag, 2003, 63: 37–56

[24]Zhang X Y, Chen S Y, Sun H Y. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig Sci, 2008, 7: 1–10

[25]Sun H Y, Shen Y J, Yu Q, Gerald F, Zhang Y Q, Liu C M, Zhang X Y. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agric Water Manag, 2010, 97: 1139–1145

[26]Fan T-L(樊廷录), Ma M-S(马明生), Wang S-Y(王淑英), Li S-Z(李尚中), Zhao G(赵刚). A study on the relationship between stem soluble sugar with grain yield and water use efficiency in different winter wheat under limited irrigation condition. Sci Agric Sin (中国农业科学), 2010, 43(12): 2428–2434 (in Chinese with English abstract)

[27]Feng G-L(冯广龙), Liu C-M(刘昌明). Analys is of root system growth in relation to soil water extraction pattern by winter wheat under water limiting conditions. J Nat Resour (自然资源学报), 1998, 13(3): 234–240 (in Chinese with English abstract)

[28]Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manag, 2010, 97: 1117–1125

[29]Dong B D, Shi L, Shi C H, Qiao Y Z, Liu M Y, Zhang Z B. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes. Agric Water Manag, 2011, 99: 103–110

[30]Ning D-F(宁东峰), Li Z-J(李志杰), Sun W-Y(孙文彦), Ma W-P(马卫萍), Huang S-W(黄绍文), Zhao B-Q(赵秉强). Effects of water-saving irrigation on water consumption and photosynthetic characteristics of winter wheat in Huang-Huai-Hai area of China. Plant Nutr Fert Sci(植物营养与肥料学报), 2010, 16(4): 852–858 (in Chinese with English abstract)

[31]Zhang S-Q(张胜全), Fang B-T(方保停), Wang Z-M(王志敏), Zhou S-L(周顺利), Zhang Y-H(张英华). Influence of different spring irrigation treatments on water use and yield formation of late-sowing winter wheat. Acta Ecol Sin(生态学报), 2009, 29(4): 2035–2044 (in Chinese with English abstract)

[32]Li F M, Liu X L, Guo A H. Effects of early soil moisture distribution on the dry matter partition between root and shoot of winter wheat. Agric Water Manag, 2001, 49: 163–171

[33]Wang K-W (王克武), Wang Z-P (王志平), Zheng Y-L (郑雅莲), Zhang N (张娜), Zhu Q-Y (朱青艳). Selection of wheat varieties with high WUE and study on laws of their water consumption. Agric Res Arid Areas (干旱地区农业研究), 2009, 27(2): 69–73 (in Chinese with English abstract)

[34]Zhou L-Y(周凌云). Water supply and potential productivity in rainfed wheat field in Fengqiu region. Acta Pedol Sin (土壤学报), 1993, 30(3): 297–303 (in Chinese with English abstract)

[35]Sui P(隋鹏), Zhang H-L(张海林), Xu C(许翠), Gao W-S(高旺盛). Comparison of soil water consumption characteristics between drought-resistant and water-liking wheat varieties. Agric Res Arid Areas (干旱地区农业研究), 2005, 23(4): 26–31, 57 (in Chinese with English abstract)

[36]Kang S Z, Zhang L, Liang Y L, Hu Y T, Cai H J, Gu B J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric Water Manag, 2002, 55: 203−216

[37]Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron, 2008, 28: 138–147

[38]Hu M-Y(胡梦芸), Zhang Z-B(张正斌), Xu P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin (作物学报), 2007, 33 (11): 1884–1891 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!