欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1039-1051.doi: 10.3724/SP.J.1006.2023.22023

• 耕作栽培·生理生化 • 上一篇    下一篇

侧深施肥下水稻高产形成的根系形态及其生理变化特征

张晨晖(), 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲*(), 霍中洋, 戴其根, 郭保卫   

  1. 农业农村部长江流域稻作技术创新中心/江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/扬州大学水稻产业工程技术研究院, 江苏扬州 225009
  • 收稿日期:2022-04-21 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-15
  • 通讯作者: *许轲, E-mail: xuke@yzu.edu.cn
  • 作者简介:E-mail: 1409488070@qq.com
  • 基金资助:
    江苏省农业重点研发计划项目(BE2021361/BE2019343);国家自然科学基金项目(32272200)

Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice

ZHANG Chen-Hui(), ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke*(), HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei   

  1. Innovation Center of Rice Cultivation Technology in Yangtze River Valley of Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-04-21 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-15
  • Contact: *E-mail: xuke@yzu.edu.cn
  • Supported by:
    Jiangsu Province Agricultural Key Research and Development Plan Project(BE2021361/BE2019343);National Natural Science Foundation of China(32272200)

摘要:

水稻侧深施肥是均匀地将肥料深施在秧苗一侧土壤根际的一种不对称局部施肥技术, 具有减肥增产、提高肥料利用率和减少劳动力投入等优点, 然而侧深施肥下水稻根系特征及其与产量形成的关系尚不清楚。本试验以丰粳1606和南粳9108为材料, 设置普通尿素常规施肥(conventional fertilization with common urea, CF)、缓释肥减氮15%表施(conventional fertilization with 15% reduction of control released fertilizer, CFCR)、普通尿素减氮15%侧深施肥(side-deep fertilization with 15% reduction of common urea, SDCU)和缓释肥减氮15%侧深施肥(side-deep fertilization with 15% reduction of control released fertilizer, SDCR) 4种氮处理, 研究不同施肥方式对水稻根系形态结构和生理特征以及产量的影响。结果表明: (1) SDCR处理水稻产量最高, 其次分别为CF和CFCR处理, 而SDCU处理产量最低; (2) SDCR处理显著提高了不同生育时期总根长、根尖数、根表面积和根体积; (3) SDCR处理降低了不同生育时期根系的皮层横截面积、皮层细胞层数和不定根直径, 提高了根系中柱直径, 但对皮层生活细胞面积和通气组织面积影响不显著; (4)与CF处理相比, SDCR处理显著提高了根系活力; 根系氮代谢酶在生育期内呈现先上升后下降趋势, 抽穗期达到峰值, 其中SDCR处理下不同生育时期水稻根系谷氨酸合成酶和谷氨酰胺合成酶活性最高。因此, 缓释肥侧深施肥可改善根系形态、结构和生理特征, 增强根系吸收养分和水分能力, 防止后期植株早衰, 从而提高水稻产量, 达到提高肥料利用效率, 实现减氮增产的目的。

关键词: 水稻, 侧深施肥, 产量, 根系形态结构, 生理特征

Abstract:

The side-deep fertilization of rice is an asymmetric local fertilization for rhizosphere of seedlings that fertilizers are applied deep in paddy soil. It has the advantages of reducing fertilizer application and labor cost, increasing fertilizer use efficiency and grain yield. However, the effects of side-deep fertilization on root characteristics and its relationship with grain yield are unclear. This field experiment was conducted using rice verities of Fengjing 1606 and Nanjing 9108. Four nitrogen treatments, conventional fertilization with common urea (CF), conventional fertilization with 15% reduction of control released fertilizer (CFCR), side-deep fertilization with 15% reduction of common urea (SDCU), and side-deep fertilization with 15% reduction of control released fertilizer (SDCR), were tested to explore the effects of different nitrogen treatments on root morphological traits, anatomical structure, physiological characteristics, and grain yield. The results showed as follows: (1) The grain yield of SDCR treatment was the highest, followed by CF and CFCR treatments, the yields of SDCU treatment was the lowest. (2) SDCR treatment significantly increased the total root length, the root tips, root surface area, and root volume at different growth stage. (3) SDCR treatment reduced the cortical cross-sectional area of rice roots, the cortical cell layers, and the root diameter, and increases the stele diameter at different growth stages, however, there was no significant effect on the aerenchyma area and cortical cell area. (4) Compared with CF treatment, SDCR treatment significantly improved rice root activity, root nitrogen metabolism enzyme activity increased and reached the peak at heading stage, and then decreased, SDCR treatment had the highest GOGAT and GS activities at different growth stages. Therefore, to improve rice yield, improve the fertilizer utilization efficiency, and achieve the purpose of nitrogen reduction and production increase, the side-deep fertilization with 15% reduction of control released fertilizer could improve root morphological traits, anatomical structure, and physiological characteristics, enhance the root ability to absorb nutrients and water, prevent premature senescence of plant.

Key words: rice, side-deep fertilization, yield, root morphology structure, physiological characteristics

表1

氮肥处理及施用量"

处理
Treatment
施氮量
Nitrogen application
rate (kg N hm-2)
氮肥运筹 Nitrogen fertilizer application (kg N hm-2)
基肥
Base fertilizer
分蘖肥
Tillering fertilizer
穗肥(倒3.5叶)
Panicle fertilizer
(3.5 leaf age remainders)
穗肥(倒1.5叶)
Panicle fertilizer
(1.5 leaf age remainders)
CF 300 120 60 60 60
CFCR 255 255 0 0 0
SDCU 255 255 0 0 0
SDCR 255 255 0 0 0

表2

供试地区基本气象资料"

月份
Month
最低温度
Minimum
temperature (℃)
最高温度
Maximum
temperature (℃)
平均温度
Mean
temperature (℃)
降雨量
Rainfall
(mm)
相对湿度
Relative humidity
(%)
日照时间
Day length
(h)
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
5 13.0 12.6 35.4 34.6 22.6 21.6 48.6 193.4 72.8 73.5 188.6 157.4
6 13.5 16.7 35.4 36.4 25.5 26.4 359.1 121.7 80.9 76.6 112.0 151.1
7 19.8 22.0 34.6 37.7 25.5 29.0 212.2 434.9 87.2 83.3 63.8 133.1
8 23.2 20.7 38.3 37.7 30.5 28.0 140.7 138.7 81.7 83.9 202.9 138.7
9 16.5 18.2 34.6 35.9 24.0 26.0 30.2 35.7 77.8 78.8 183.7 128.4
10 5.5 8.0 29.6 33.9 17.0 19.5 39.4 88.2 75.4 76.2 159.0 101.3
11 4.6 1.7 28.5 22.0 12.5 12.5 60.4 33.9 75.9 68.3 136.0 95.9

表3

供试地区土壤基础地力"

年份
Year
pH 有机质
Organic matter (g kg-1)
全氮
Total nitrogen (g kg-1)
速效磷
Olsen-P (mg kg-1)
速效钾
Available K (mg kg-1)
2020 7.79 31.01 2.58 14.77 122.08
2021 8.34 33.73 3.10 14.80 123.12

表4

供试地区土壤氨态氮和硝态氮空间分布"

时期
Stage
处理
Treatment
铵态氮
Ammoniacal nitrogen
铵态氮
Ammoniacal nitrogen
硝态氮
Nitrate nitrogen
硝态氮
Nitrate nitrogen
FJ 1606 NJ 9108 FJ 1606 NJ 9108
0-5 cm 5-10 cm 0-5 cm 5-10 cm 0-5 cm 5-10 cm 0-5 cm 5-10 cm
PI CF 43.55 32.38 41.57 28.61 29.75 28.04 31.14 28.11
CFCR 35.76 27.42 35.72 25.90 29.40 20.71 29.51 25.65
SDCU 40.69 25.19 39.82 26.35 30.97 26.72 24.81 23.95
SDCR 37.82 28.91 37.28 32.20 31.54 21.33 29.06 24.51
HD CF 15.83 15.63 16.29 20.54 20.14 19.76 16.54 18.80
CFCR 16.33 13.84 15.30 17.65 20.82 16.80 13.82 17.54
SDCU 14.68 13.77 14.41 21.83 22.12 17.18 14.03 16.64
SDCR 18.84 16.86 17.36 18.16 21.67 19.60 17.20 19.50
MT CF 17.44 14.54 16.15 32.89 31.52 23.36 16.87 22.60
CFCR 16.35 12.38 15.71 29.87 28.94 22.74 14.69 21.35
SDCU 15.81 12.14 14.19 26.30 25.11 20.12 13.13 19.16
SDCR 19.87 15.06 18.12 32.31 32.43 23.40 15.25 23.78

表5

供试地区土壤0~5 cm酶活性"

时期
Stage
处理
Treatment
碱性磷酸酶
Alkaline phosphatase
脲酶
Urease
蔗糖酶
Sucrase
纤维素酶
Cellulase
脱氢酶
Dehydrogenase
FJ1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108 FJ 1606 NJ 9108
PI CF 65.31 64.88 909.31 779.68 709.68 727.43 116.26 116.57 85.09 87.12
CFCR 63.95 58.96 748.24 750.47 649.55 646.26 119.78 115.64 83.33 86.24
SDCU 63.86 55.61 895.75 768.67 639.25 642.87 115.70 112.78 84.47 83.38
SDCR 65.58 66.88 760.23 736.77 717.23 744.44 129.22 126.48 86.75 88.33
HD CF 68.31 68.16 762.83 752.05 721.75 752.86 123.58 125.17 92.22 93.68
CFCR 65.50 65.08 837.84 789.23 668.13 703.43 128.40 120.29 89.36 89.64
SDCU 65.34 64.40 763.93 735.25 668.13 670.18 126.90 118.67 86.90 86.35
SDCR 68.56 71.30 783.91 836.61 762.43 815.75 132.64 138.26 93.33 96.90
MT CF 57.30 57.43 722.38 722.17 693.21 616.16 113.91 115.47 84.40 86.93
CFCR 57.29 56.51 707.84 714.22 662.23 599.73 108.02 110.22 82.65 84.23
SDCU 57.07 56.27 708.31 687.75 573.92 568.50 103.45 111.46 79.97 82.93
SDCR 58.14 61.20 750.68 710.08 699.29 627.49 121.35 122.01 85.30 87.71

表6

不同氮处理对水稻产量及产量构成因子的影响"

年份
Year
品种
Variety
处理
Treatment
穗数
Panicles number
(×104 hm-2)
每穗粒数
Spikelets number
per panicle
千粒重
1000-grain weight (g)
结实率
Grain filling rate (%)
产量
Grain yield
(t hm-2)
2020 丰粳1606
FJ 1606
CF 293.41 a 139.67 a 27.25 a 95.29 a 10.03 ab
CFCR 288.87 a 139.33 a 27.46 a 94.09 a 9.83 bc
SDCU 288.74 a 138.33 a 27.65 a 93.63 a 9.77 c
SDCR 294.01 a 140.67 a 27.72 a 95.29 a 10.18 a
南粳9108
NJ 9108
CF 321.22 ab 147.33 a 24.43 a 94.30 a 10.41 a
CFCR 318.23 b 147.33 a 24.54 a 94.20 a 10.33 a
SDCU 317.98 b 145.33 a 24.43 a 93.84 a 10.33 a
SDCR 324.03 a 147.33 a 24.85 a 93.40 a 10.53 a
2021 丰粳1606
FJ 1606
CF 287.72 a 150.64 a 26.65 a 92.55 a 10.06 a
CFCR 284.16 ab 151.25 a 26.57 a 90.01 ab 9.87 b
SDCU 275.00 b 144.20 a 25.89 a 89.40 b 9.77 b
SDCR 292.09 a 154.56 a 26.14 a 87.69 b 10.18 a
南粳9108
NJ 9108
CF 319.70 a 155.23 a 24.30 a 87.20 b 10.49 a
CFCR 317.56 a 155.15 a 24.35 a 89.14 ab 10.33 b
SDCU 316.21 a 154.46 a 24.15 a 89.31 ab 10.30 b
SDCR 323.46 a 155.21 a 24.35 a 90.72 a 10.63 a

表7

不同时期不同氮处理对水稻根系形态性状的影响"

品种
Variety
生育
时期
Growth
stage
处理
Treatment
总根长
Root length
(×103 cm plant-1)
根尖数
Root tip number
(×104 plant-1)
根表面积
Root surface area
(×103 cm2 plant-1)
根体积
Root
volume
(cm3 plant-1)
比根长
Specific root length
(m g-1)
比根重
Specific root weight
(g m-1)
比根表面积
Specific root surface area
(cm2 g-1)
比根体积
Specific root volume
(cm3 g-1)
丰粳1606
FJ 1606
PI CF 10.08 b 5.54 b 1.62 ab 24.16 b 48.68 ab 0.021 ab 780.27 a 11.67 b
CFCR 8.40 c 4.58 c 1.52 b 20.77 c 46.45 ab 0.022 ab 840.43 a 11.43 b
SDCU 8.88 c 4.73 c 1.55 ab 23.36 b 43.79 b 0.023 a 764.80 a 11.46 b
SDCR 11.03 a 9.63 a 1.66 a 28.07 a 54.17 a 0.019 b 817.34 a 13.80 a
HD CF 11.55 b 6.74 b 1.90 b 25.06 b 38.68 b 0.026 a 634.94 b 8.40 c
CFCR 11.12 b 5.64 c 1.80 bc 22.45 c 60.25 a 0.018 c 980.31 a 12.05 a
SDCU 10.64 b 5.75 c 1.72 c 21.27 c 45.08 b 0.022 b 727.90 b 9.00 bc
SDCR 15.79 a 12.79 a 2.19 a 29.66 a 53.99 a 0.019 c 747.83 b 10.14 b
MT CF 7.57 b 5.47 b 1.23 a 15.86 ab 47.34 a 0.021 c 767.43 a 9.91 b
CFCR 6.98 c 3.76 c 1.08 b 15.94 ab 49.94 a 0.020 c 774.17 a 11.37 a
SDCU 6.52 c 2.71 d 1.03 b 14.28 b 35.54 b 0.029 a 566.57 b 7.72 c
SDCR 8.30 a 7.54 a 1.28 a 17.59 a 39.82 b 0.025 b 610.73 b 8.41 c
南粳9108
NJ 9108
PI CF 16.15 b 12.79 b 2.25 b 24.08 b 76.08 a 0.013 b 1058.86 a 11.32 b
CFCR 13.56 c 9.44 d 1.56 d 17.30 d 60.23 b 0.017 a 693.94 b 7.73 c
SDCU 15.57 b 11.78 c 2.00 c 19.83 c 80.24 a 0.012 b 1033.27 a 10.22 b
品种
Variety
生育
时期
Growth
stage
处理
Treatment
总根长
Root length
(×103 cm plant-1)
根尖数
Root tip number
(×104 plant-1)
根表面积
Root surface area
(×103 cm2 plant-1)
根体积
Root
volume
(cm3 plant-1)
比根长
Specific root length
(m g-1)
比根重
Specific root weight
(g m-1)
比根表面积
Specific root surface area
(cm2 g-1)
比根体积
Specific root volume
(cm3 g-1)
南粳9108
NJ 9108
PI SDCR 17.30 a 13.70 a 2.47 a 30.85 a 75.24 a 0.013 b 1072.88 a 13.41 a
HD CF 18.64 b 17.88 b 2.65 b 32.26 b 66.40 a 0.015 c 942.53 a 11.49 a
CFCR 17.34 c 14.89 c 2.35 c 28.06 c 54.77 b 0.018 b 741.39 b 8.88 b
SDCU 16.30 c 12.24 d 2.06 d 26.67 c 36.15 c 0.028 a 455.71 c 5.91 c
SDCR 22.35 a 24.24 a 3.62 a 51.62 a 48.49 b 0.021 b 785.52 b 11.19 a
MT CF 8.80 b 3.65 b 1.79 b 21.28 b 32.69 a 0.031 ab 664.47 a 7.90 b
CFCR 7.25 c 3.17 b 1.34 c 18.20 c 35.04 a 0.028 b 647.51 a 8.83 b
SDCU 6.27 d 3.14 b 1.13 d 14.56 d 34.26 a 0.029 b 613.59 a 7.96 b
SDCR 9.68 a 4.87 a 2.08 a 35.01 a 30.58 a 0.033 a 655.23 a 11.06 a

表8

不同时期不同氮处理对水稻根系解剖结构的影响"

品种
Variety
生育
时期
Time
处理
Treatment
皮层
横截面积
Cortical cross-sectional area
(×104 µm2)
皮层生活细胞面积
Cortical cell area
(×104 µm2)
皮层细胞层数
Cortical cell layer
中柱
直径
Stele
diameter
(µm)
不定根
直径
Root diameter
(µm)
通气组织
面积
Aerenchyma area
(×103 µm2)
通气组织
比例
Aerenchyma formation
(%)
皮层生活细胞比例
Cortical cell area formation
(%)
中柱直径与根直径之比
Stele
diameter
/root
diameter
丰粳1606
FJ 1606
PI CF 21.21 b 17.42 b 11.33 ab 126.12 b 565.81 a 37.92 ab 17.89 ab 82.11 ab 0.22 bc
CFCR 22.36 b 22.14 a 12.00 a 119.88 c 562.11 a 2.19 b 1.10 b 98.90 a 0.21 c
SDCU 24.71 a 18.22 ab 12.00 a 115.41 d 543.07 a 62.90 a 25.64 a 73.54 b 0.21 c
SDCR 20.55 b 17.11 b 9.67 b 133.64 a 549.12 a 34.49 ab 16.78 ab 83.22 ab 0.24 a
HD CF 13.88 b 7.14 b 10.33 ab 124.89 a 497.25 b 60.14 a 42.89 a 51.38 b 0.25 b
CFCR 16.62 a 13.01 a 11.00 ab 115.40 b 562.35 a 36.05 a 21.81 a 78.19 a 0.21 c
SDCU 16.46 a 12.97 a 11.67 a 118.72 b 549.51 a 34.95 a 20.00 a 80.00 a 0.22 c
SDCR 12.76 b 8.77 ab 9.33 b 125.75 a 424.32 c 42.70 a 33.68 a 68.45 ab 0.30 a
MT CF 8.08 b 5.88 a 11.67 a 92.24 ab 440.81 b 21.94 a 27.68 a 72.32 a 0.21 b
CFCR 13.70 a 8.90 a 11.67 a 91.30 b 481.28 a 48.04 a 35.10 a 64.90 a 0.19 c
SDCU 13.78 a 8.61 a 12.00 a 92.92 ab 440.25 b 53.33 a 38.73 a 62.47 a 0.21 b
SDCR 8.79 b 5.39 a 11.33 a 96.09 a 413.71 b 33.97 a 38.26 a 61.72 a 0.23 a
南粳9108
NJ 9108
PI CF 17.56 c 15.60 c 11.33 a 122.49 b 563.95 ab 23.11 a 12.75 a 89.22 a 0.22 b
CFCR 25.42 a 24.72 a 11.00 ab 119.22 bc 575.89 ab 6.99 a 2.83 a 97.17 a 0.21 bc
SDCU 21.93 b 20.78 b 11.67 a 116.63 c 600.65 a 11.54 a 4.94 a 95.06 a 0.20 c
SDCR 13.27 d 12.40 d 10.33 b 130.05 a 534.06 b 8.63 a 6.44 a 93.56 a 0.24 a
HD CF 19.06 b 13.35 b 9.67 a 114.51 b 490.25 a 57.05 a 30.07 a 69.93 b 0.23 b
CFCR 20.32 ab 17.57 a 9.67 a 104.16 c 453.34 a 27.55 b 13.52 b 86.48 a 0.23 b
SDCU 21.55 a 17.32 a 10.00 a 101.66 c 454.54 a 42.31 ab 19.51 ab 80.49 ab 0.23 b
SDCR 11.97 c 8.69 c 9.67 a 122.04 a 458.87 a 32.77 b 27.10 a 72.90 b 0.27 a
MT CF 8.53 b 6.24 b 11.00 a 110.14 b 460.38 b 22.96 b 26.78 b 73.22 a 0.24 a
CFCR 10.68 a 8.09 a 11.00 a 101.59 c 546.12 a 25.86 b 24.74 b 75.26 a 0.19 b
SDCU 11.00 a 5.89 b 11.00 a 102.52 c 557.24 a 51.09 a 46.63 a 53.37 b 0.19 b
SDCR 8.00 b 4.71 b 10.00 b 116.42 a 457.97 b 32.93 b 41.21 a 58.79 b 0.25 a

图1

不同时期不同氮处理对水稻根系氧化活性的影响 不同字母表示同一品种各处理间差异在0.05概率水平差异显著。缩写同表4。"

图2

不同时期不同氮处理对根系谷氨酸合成酶活性的影响 缩写同表4。"

图3

不同时期不同氮处理对根系谷氨酰胺合成酶活性的影响 缩写同表4。"

表9

产量及产量构成与水稻根系指标的相关性(n = 24)"

根系性状
Root trait
产量
Grain yield
穗数
Panicle
每穗粒数
Spikelets number per panicle
千粒重
1000-grain weight
结实率
Grain filling percentage
幼穗分化期总根长PI-root length 0.9581** 0.9701** 0.9352** -0.9070** -0.3710
幼穗分化期根尖数PI-root tips 0.9593** 0.9031** 0.8828** -0.8085* -0.2517
幼穗分化期根表面积PI-root surface area 0.7957* 0.7799* 0.7150* -0.6719 -0.4170
幼穗分化期根体积PI-root volume 0.2469 0.0159 -0.0267 0.2023 0.0719
抽穗期总根长HD-root length 0.9565** 0.8958** 0.8980** -0.7736* -0.3036
抽穗期根尖数HD-root tips 0.9270** 0.8634** 0.8651** -0.7268* -0.3149
抽穗期根表面积HD-root surface area 0.8255* 0.7572* 0.7481* -0.5994 -0.3603
抽穗期根体积HD-root volume 0.7687* 0.6666 0.6422 -0.4903 -0.3313
成熟期总根长MT-root length 0.6221 0.4386 0.4620 -0.2460 0.0549
成熟期根尖数MT-root tips 0.1093 -0.2493 -0.2204 0.4169 0.7170*
成熟期根表面积MT-root surface area 0.7896* 0.7216* 0.7194* -0.5718 -0.2551
成熟期根体积MT-root volume 0.6709 0.5987 0.5850 -0.4276 -0.3856
幼穗分化期皮层横截面积PI-cortical cross-sectional area -0.6231 -0.4876 -0.4424 0.3205 0.1569
幼穗分化期皮层细胞层数PI-cortical cell layer -0.5375 -0.2371 -0.2816 0.0418 -0.3768
幼穗分化期中柱直径PI-stele diameter 0.3551 0.0199 0.0488 0.1846 0.5095
幼穗分化期不定根直径PI-root diameter 0.1454 0.2575 0.2453 -0.4340 0.0939
抽穗期皮层横截面积HD-cortical cross-sectional area 0.1083 0.3602 0.3692 -0.5552 -0.2802
抽穗期皮层细胞层数HD-cortical cell layer -0.8515** -0.6453 -0.6912 0.5402 -0.3246
抽穗期中柱直径HD-stele diameter -0.2587 -0.4993 -0.5041 0.6656 0.4301
根系性状
Root trait
产量
Grain yield
穗数
Panicle
每穗粒数
Spikelets number per panicle
千粒重
1000-grain weight
结实率
Grain filling percentage
抽穗期不定根直径HD-root diameter -0.7646* -0.5588 -0.5723 0.4527 -0.2760
成熟期皮层横截面积MT-cortical cross-sectional area -0.7189* -0.4836 -0.4787 0.3417 -0.4266
成熟期皮层细胞层数MT-cortical cell layer -0.9154** -0.8645** -0.8492** 0.7447* 0.3802
成熟期中柱直径MT-stele diameter 0.9008** 0.9104** 0.8854** -0.8076* -0.4662
成熟期不定根直径MT-root diameter 0.3167 0.5253 0.5243 -0.6749 -0.4038
幼穗分化期谷氨酸合成酶PI-GOGAT 0.4215 0.1932 0.1726 0.0320 -0.0583
抽穗期谷氨酸合成酶HD-GOGAT 0.3741 0.1307 0.1684 0.0847 0.1961
成熟期谷氨酸合成酶MT-GOGAT 0.8249* 0.6521 0.7022 -0.4840 0.0128
幼穗分化期谷氨酰胺合成酶PI-GS 0.4580 0.2722 0.2134 -0.0662 -0.1606
抽穗期谷氨酰胺合成酶HD-GS 0.4203 0.2032 0.2476 -0.0072 0.2327
成熟期谷氨酰胺合成酶MT-GS 0.3913 0.1283 0.1042 0.0923 0.1464
[1] Carter C A, Zhong F, Zhu J. Advances in Chinese agriculture and its global implications. Appl Econ Perspt Policy, 2012, 34(1): 1-36.
[2] 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究. 植物营养与肥料学报, 2018, 24: 1113-1120.
Ma K, Diao G. Research on the contribution rate of fertilizer to grain yield in China. J Plant Nutr Fert, 2018, 24: 1113-1120. (in Chinese with English abstract)
[3] Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[4] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lv S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J, He M G, Tong Y N, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Dou Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[5] 赵立军, 颜珊珊, 王宇杰, 张志鹏, 张玉鑫, 陈昌峰, 许春林. 侧深施肥插秧机施肥量对水稻栽培的影响. 农机化研究, 2019, 41(10): 192-197.
Zhao L J, Yan S S, Wang Y J, Zhang Z P, Zhang Y X, Chen C F, Xu C L. The influence of fertilization rate on the rice cultivation by side deep fertilizer transplanter. J Agric Mechan Res, 2019, 41(10): 192-197. (in Chinese with English abstract)
[6] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群.. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in china. Sci Agric Sin, 2021, 54: 1301-1321. (in Chinese with English abstract)
[7] 陈雄飞, 罗锡文, 王在满, 张明华, 胡炼, 曾山, 莫钊文. 水稻穴播同步侧位深施肥技术试验研究. 农业工程学报, 2014, 30(16) : 1-7.
Chen X F, Luo X W, Wang Z M, Zhang M H, Hu L, Zeng S, Mo Z W. Experiment of synchronous side deep fertilizing technique with rice hill-drop drilling. Trans CSAE, 2014, 30(16): 1-7. (in Chinese with English abstract)
[8] Ke J, He R C, Hou P F, Ding C, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q, Chen L, Li G H. Combined controlled- released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agric Ecosys Environ, 2018, 265: 402-412.
doi: 10.1016/j.agee.2018.06.023
[9] Zhu C H, Xiang J, Zhang Y, Zhang Y K, Zhu D F, Chen H Z. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in eastern China. Sci Rep, 2019, 9: 5653
doi: 10.1038/s41598-019-42039-7 pmid: 30948780
[10] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li J D, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02086
[11] 王晓丹, 向镜, 张玉屏, 张义凯, 王亚梁, 陈惠哲. 水稻机插同步侧深施肥技术进展及应用. 中国稻米, 2020, 26(5): 53-57.
doi: 10.3969/j.issn.1006-8082.2020.05.012
Wang X D, Xiang J, Zhang Y P, Zhang K Y, Wang Y L, Chen H Z. Research advances and application of rice mechanized transplanting with side deep fertilization technology. China Rice, 2020, 26(5): 53-57. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2020.05.012
[12] Henry A, Cal A J, Batoto C, Torres R O, Serraj R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot, 2012, 63: 4751-4763.
doi: 10.1093/jxb/ers150 pmid: 22791828
[13] Kadam N N, Yin X, Bindraban P S, Struik P C, Jagadish K S V. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? Plant Physiol, 2015, 167: 1389-1401.
doi: 10.1104/pp.114.253328 pmid: 25614066
[14] Hu B, Henry A, Brown K M, Lynch J P. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays). Ann Bot, 2014, 113: 181-189.
doi: 10.1093/aob/mct259
[15] Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol, 2014, 166: 1943-1955.
doi: 10.1104/pp.114.249037 pmid: 25355868
[16] 唐文帮, 邓化冰, 肖应辉, 张桂莲, 范科, 莫慧, 陈立云. 两系杂交水稻C两优系列组合的高产根系特征. 中国农业科学, 2010, 43: 2859-2868.
Tang W B, Deng H B, Xiao Y H, Zhang G L, Fang K, Mo H, Chen L Y. Root characteristics of high-yield C Liangyou rice combinations of two-line hybrid rice. Sci Agric Sin, 2010, 43: 2859-2868. (in Chinese with English abstract)
[17] Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65-82.
doi: 10.1016/S0378-4290(96)01039-8
[18] Rhodes D, Rendon G A, Stewart G R. The control of glutamine synthetase level in Lemna minor L. Planta, 1975, 125: 201-211.
doi: 10.1007/BF00385596 pmid: 24435433
[19] Singh R P, Srivastava H S. Increase in glutamate synthetase activity (NADH-dependent) in excised root and leaf of maize seedlings in response to acidic amino acids and amides. Physiol Plant, 1987, 182: 497-500.
[20] 尹娟, 费良军, 勉韶平. 宁夏银南灌区稻田控制排水条件下氮素淋失的研究. 西北农林科技大学学报(自然科学版), 2006, (1): 108-112.
Yin J, Fei L J, Mian S P. Experiment on the nitrogen leaching in the drainage condition of rice field in Ningxia Yinnan irrigation region. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2006, (1): 108-112. (in Chinese with English abstract)
[21] 关宋萌. 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 274-323.
Guan S M. Soil Enzymes and Their Research Methods. Beijing: Agriculture Press, 1986. pp 274-323. (in Chinese)
[22] 莫钊文, 潘圣刚, 王在满, 罗锡文, 田华, 段美洋, 唐湘如. 机械同步深施肥对水稻品质和养分吸收利用的影响. 华中农业大学学报, 2013, 32(5): 34-39.
Mo Z W, Pan S G, Wang Z M, Luo W X, Tian H, Duan M Y, Tang X R. Effects of deeply mechanized fertilizer application on rice quality and nutrient absorption and utilization of direct seeding rice. J South China Agric Univ, 2013, 32(5): 34-39. (in Chinese with English abstract)
[23] Pan S G, Wen X C, Wang Z M, Umair A, Tian H, Duan M Y, Mo Z W, Fan P S, Tang X R. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res, 2017, 203: 139-149.
doi: 10.1016/j.fcr.2016.12.011
[24] 赵红玉, 徐寿军, 杨成林, 王丽妍. 侧深施肥技术对寒地水稻生长及产量形成的影响. 内蒙古民族大学学报(自然科学版), 2017, 32: 347-352.
Zhao Y H, Xu S J, Yang C L, Wang L Y. Effects of side deep fertilizing on growth and yield of rice in cold regions. J Inner Mongolia Agric Univ (Nat Sci Edn), 2017, 32: 347-352. (in Chinese with English abstract)
[25] 怀燕, 陈照明, 张耿苗, 姜铭北, 许剑锋, 王强. 水稻侧深施肥技术的氮肥减施效应. 浙江大学学报(农业与生命科学版), 2020, 46(2): 217-224.
Huai Y, Chen Z M, Zhang G M, Jiang M B, Xu J F, Wang Q. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production. J Zhejiang Univ (Agric Life Sci Edn), 2020, 46(2): 217-224. (in Chinese with English abstract)
[26] 刘汝亮, 王芳, 王开军, 张爱平, 李友宏, 洪瑜, 杨正礼. 控释氮肥侧条施用对东北地区水稻产量和氮肥损失的影响. 水土保持学报, 2018, 32: 252-256.
Liu R L, Wang F, Wang K J, Zhang A P, Li Y H, Hong Y, Yang Z L. Effects of side strip application of controlled release nitrogen fertilizer on rice yield and nitrogen loss in Northeast China. J Soil Water Conserv, 2018, 32: 252-256. (in Chinese with English abstract).
[27] 王昕, 唐宏亮, 申建波. 玉米根系对土壤氮、磷空间异质性分布的响应. 植物营养与肥料学报, 2013, 19: 1058-1064.
Wang X, Tang H L, Shen J B. Root responses of maize to spatial heterogenous nitrogen and phosphorus. Plant Nutr Fert Sci, 2013, 19: 1058-1064. (in Chinese with English abstract).
[28] 郑圣先, 聂军, 戴平安, 郑颖俊. 控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响. 植物营养与肥料学报, 2006, 12: 2188-2194.
Zhen S X, Nie J, Dai P A, Zheng Y J. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice. Plant Nutr Fert Sci, 2006, 12: 2188-2194. (in Chinese with English abstract)
[29] 陈亚宇. 不同施肥深度对水稻氮磷钾动态变化及生长和产量的影响. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Chen Y Y. NPK Dynamic Changes of Rice Cultivation System and Influence of Growth and Yield with Different Fertilization Depth. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015. (in Chinese with English abstract)
[30] 彭玉, 马均, 蒋明金, 严奉君, 孙永健, 杨志远. 缓/控释肥对杂交水稻根系形态、生理特性和产量的影响. 植物营养与肥料学报, 2013, 19: 1048-1057.
Peng Y, Ma J, Jiang M J, Yan F J, Sun Y J, Yang Z Y. Effect of slow/controlled release fertilizer on root morphological and physiological characteristics of rice. Plant Nutr Fert Sci, 2013, 19: 1048-1057. (in Chinese with English abstract)
[31] 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 根际氧环境对水稻幼苗根系微形态结构的影响及其生理机制. 中国水稻科学, 2022, 36: 399-409.
doi: 10.16819/j.1001-7216.2022.211103
Xiao S D, Xu C M, Wang D Y, Zhang X F, Chu G, Liu Y H. The effect of rhizosphere oxygen environment on the root micromorphological structure and its physiological mechanism of rice seedlings. Chin J Rice Sci, 2022, 36: 399-409.
[32] Fan M, Zhu J, Richards C, Brown K M, Lynch J P. Physiological roles for aerenchyma in phosphorus-stressed roots. Funct Plant Biol, 2003, 30: 493-506.
doi: 10.1071/FP03046 pmid: 32689034
[33] Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol, 2012, 53: 495-504.
doi: 10.1093/pcp/pcs003 pmid: 22257489
[34] 李科, 卢向阳, 彭丽莎. 饲料稻氮代谢特性研究. 湖南农业大学学报(自然科学版), 2001, (5): 331-334.
Li K, Lu X Y, Peng L S. Characteristics of nitrogen metabolism in forage rice. J Hunan Agric Univ (Nat Sci Edn), 2001, (5): 331-334. (in Chinese with English abstract)
[35] 卢永恩, 罗风, 杨猛, 李香花, 练兴明. 抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响. 中国科学: 生命科学, 2011, 41: 481-493.
Lu Y N, Luo F, Yang M, Li X H, Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sci China Life Sci, 2011, 41: 481-493. (in Chinese with English abstract)
[1] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[2] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[3] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[4] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[5] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[6] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[7] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[8] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[9] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[10] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[11] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[12] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[13] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[14] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[15] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .