欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1942-1953.doi: 10.3724/SP.J.1006.2023.21049

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮互作下强筋小麦师栾02-1产量和品质

董志强(), 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领*()   

  1. 河北省农林科学院粮油作物研究所 / 农业农村部华北地区作物栽培科学观测实验站 / 河北省作物栽培生理与绿色生产重点实验室, 河北石家庄 050035
  • 收稿日期:2022-07-15 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-29
  • 通讯作者: *贾秀领, E-mail: jiaxiuling2013@163.com
  • 作者简介:E-mail: woshidongzhiqiang81@126.com
  • 基金资助:
    本研究由河北省财政项目科技创新专项(2022KJCXZX-LYS-10);本研究由河北省财政项目科技创新专项(2022KJCXZX-LYS-9);河北省重点研发计划项目(20326411D)

Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction

DONG Zhi-Qiang(), LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling*()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Scientific Observing and Experimental Station of Crop Cultivation in North China, Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Shijiazhuang 050035, Hebei, China
  • Received:2022-07-15 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-29
  • Contact: *E-mail: jiaxiuling2013@163.com
  • Supported by:
    The Science and Technology Innovation Special Project of the Finance Project of Hebei Province(2022KJCXZX-LYS-10);The Science and Technology Innovation Special Project of the Finance Project of Hebei Province(2022KJCXZX-LYS-9);The Key Research and Development Program of Hebei Province(20326411D)

摘要:

明确不同水氮互作对强筋优质小麦师栾02-1产量和加工品质的影响, 为强筋小麦生产中如何通过合理灌溉和优化氮肥施用量来实现协同提高籽粒产量和加工品质的目标提供理论依据。2017—2020年, 大田条件下设置浇水次数和施氮量二因子裂区试验, 主区为浇水次数, 设春浇一水(W1, 拔节水)和春浇两水(W2, 拔节水+开花水); 副区为氮肥施用量, 设N0、N1、N2、N3、N4和N5(0、60、120、180、240和300 kg hm-2) 6个水平。结果表明, 施氮量0~300 kg hm-2时, 不同降水年型春浇一水、春浇两水小麦产量随施氮量的增加均先增加后减少, 产量最高值对应的施氮量均为240 kg hm-2。施氮量120~300 kg hm-2时, 春浇两水处理产量显著高于春浇一水处理。水氮互作对小麦单位面积收获穗数的影响最大, 其次是千粒重, 对穗粒数的影响最小。施氮量0~300 kg hm-2时, 2017—2018年度(丰水年型), 春浇两水小麦湿面筋含量、沉降值、吸水率、面团稳定时间、拉伸能量、最大拉伸阻力平均值均高于春浇一水, 而2018—2019、2019—2020年度(干旱年型)则相反: 春浇一水高于春浇两水。不同降水年型春浇一水、春浇两水小麦湿面筋含量和沉降值随施氮量的增加先增加后减少或逐渐增加, 二者最大值对应的施氮量为240 kg hm-2或300 kg hm-2; 稳定时间、拉伸能量和最大拉伸阻力随施氮量的增加均先增加后减少, 施氮量240 kg hm-2时达到最大值。不同降水年型强筋优质小麦师栾02-1生育期春浇两水、施氮量240 kg hm-2时, 籽粒产量和加工品质表现最佳。

关键词: 水氮互作, 强筋小麦, 师栾02-1, 产量, 加工品质

Abstract:

The purpose of this study is to explore the effects of different water and nitrogen interaction on yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1, and to provide theoretical basis for how to achieve the goal of synergistically improving grain yield and processing quality through reasonable irrigation and optimal nitrogen application rate in the production of strong gluten wheat. From 2017 to 2020, the two factors split zone experiment of watering times and nitrogen application amount was set under field conditions. The main-plot factor was watering times [spring watering one time (W1, jointing water) and spring watering two times (W2, jointing water + flowering water)]; and the split-plot factor was nitrogen (N) fertilizer treatment in six levels (N0: 0, N1: 60, N2: 120, N3: 180, N4: 240, and N5: 300 kg hm-2). The study showed that: When N application rate was 0-300 kg hm-2, the yield of spring irrigating one time and spring irrigating two times increased first and then decreased with the increase of N application rate, and the N application amount corresponding to the maximum grain yield was 240 kg hm-2 in the different precipitation years. When N application rate was 120-300 kg hm-2, the yield of spring irrigating two times was significantly higher than that of spring irrigating one time. Water and N interaction had the greatest effect on the number of grains per unit area, followed by 1000-grain weight, which had the least effect on grain number per spike. When N application rate was 0-300 kg hm-2, the average value of wet gluten content, sedimentation value, water absorption rate, dough stability time, tensile energy, and maximum tensile resistance of winter wheat treated with spring irrigating two times were higher than those treated with spring irrigating one time in 2017 and 2018 (wet year). However, in 2018-2019 and 2019-2020 (drought year), it was opposite: spring irrigating one time was higher than spring irrigating two times. The wet gluten content and sedimentation value of wheat in spring irrigating one time and spring irrigating two times increased first and then decreased or gradually increased with the increase of N application rate in different precipitation years, the N application rate corresponding to the maximum of the two quality indicators was 240 kg hm-2 or 300 kg hm-2. The stabilization time, tensile energy, and maximum tensile resistance increased first and then decreased with the increase of N application rate, and reached the maximum value when N application rate was 240 kg hm-2. The grain yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1 were the best when it was watered twice in spring and N was applied at 240 kg hm-2 in different precipitation years.

Key words: water and nitrogen interaction, strong gluten wheat, Shiluan 02-1, yield, processing quality

表1

试验区土壤(0~20 cm)基础养分含量"

处理
Treatment
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
有效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
W1N0 16.6 1.01 16.62 132.2
W1N1 17.1 1.05 14.81 118.3
W1N2 17.8 1.10 13.99 112.0
W1N3 18.0 1.11 12.40 118.5
W1N4 18.2 1.12 12.55 125.1
W1N5 18.7 1.18 12.04 124.3
W2N0 15.6 0.94 16.78 135.0
W2N1 17.0 1.05 17.16 120.7
W2N2 17.3 1.07 17.78 125.5
W2N3 17.6 1.12 11.17 107.7
W2N4 18.0 1.13 13.01 116.0
W2N5 18.2 1.14 12.24 102.0

表2

2017-2020年试验区降水情况"

年份
Year
月份 Month 生育年
Annual
休闲期
Fallow
period
生育期
Growth
period
7 8 9 10 11 12 1 2 3 4 5 6
2017-2018 99.2 94.5 10.7 200.3 3.8 0 2.2 0 6.9 84.9 72.3 68.3 643.1 204.4 438.7
2018-2019 45.3 130.1 4.6 21.0 2.6 3.3 0 0 0 59.3 8.3 41.3 315.8 180.0 135.8
2019-2020 158.4 44.9 25.0 30.2 0 2.0 7.4 5.4 6.6 11.0 44.4 46.6 381.9 228.3 153.6

表3

2017-2018年度不同水氮互作对小麦产量及产量构成的影响"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 542 f 23.9 f 30.6 cd 4867 e 46.7 bc
W1N1 643 e 26.7 bc 31.6 b 6629 d 47.9 a
W1N2 884 c 25.3 e 30.8 bc 7095 c 47.3 ab
W1N3 887 c 25.9 de 30.6 cd 7411 b 46.1 c
W1N4 913 bc 26.4 cd 31.0 bc 7532 b 47.7 a
W1N5 891 c 26.5 cd 29.8 d 7326 b 44.9 d
W2N0 518 f 22.1 g 32.8 a 4431 f 41.0 g
W2N1 727 d 25.5 e 30.9 bc 6760 d 43.0 ef
W2N2 979 ab 28.0 a 30.1 cd 7507 b 43.6 e
W2N3 1003 a 27.3 b 30.2 cd 7766 a 42.7 f
W2N4 1003 a 27.0 bc 30.6 cd 7825 a 43.4 e
W2N5 946 abc 27.2 b 30.6 cd 7754 a 43.2 ef

表4

2018-2019年度不同水氮互作对小麦产量及产量构成的影响"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 309 f 21.6 g 33.0 d 2998 g 38.1 d
W1N1 545 d 28.6 e 31.8 e 5198 e 38.9 d
W1N2 562 cd 30.8 d 29.8 f 5776 d 38.7 d
W1N3 614 bc 33.0 c 30.2 f 6175 c 37.2 e
W1N4 625 bc 34.0 b 29.7 f 6329 c 38.9 d
W1N5 635 b 33.5 bc 29.4 f 6276 c 37.2 e
W2N0 351 e 23.9 f 37.0 a 3308 f 42.4 c
W2N1 642 b 29.7 de 37.5 a 6887 b 43.9 b
W2N2 721 a 33.4 bc 36.8 a 8442 a 45.6 a
W2N3 770 a 32.8 c 35.7 b 8499 a 44.6 ab
W2N4 778 a 32.7 c 35.8 b 8692 a 44.2 ab
W2N5 760 a 35.9 a 34.4 c 8556 a 44.1 ab

表5

2019-2020年度不同水氮互作对小麦产量及产量构成的影响"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 230 g 15.6 d 34.1 fg 1251 g 15.7 f
W1N1 571 e 21.4 c 36.5 bcd 4811 e 40.3 a
W1N2 626 d 24.1 b 34.9 ef 5630 d 40.6 a
W1N3 656 cd 24.9 b 35.3 def 5766 d 38.3 b
W1N4 755 b 24.8 b 33.1 g 6080 c 38.0 bc
W1N5 724 bc 24.3 b 33.3 g 5797 cd 36.7 c
W2N0 341 f 15.4 d 35.5 de 1850 f 23.8 e
W2N1 631 d 21.5 c 37.7 ab 4940 e 31.0 d
W2N2 772 b 26.6 a 38.1 a 7602 b 40.4 a
W2N3 859 a 25.4 ab 36.5 bcd 7872 b 37.6 bc
W2N4 879 a 25.1 b 36.8 bc 8359 a 38.2 bc
W2N5 892 a 25.3 ab 36.0 cde 8184 a 38.7 b

表6

2017-2018年度不同水氮互作下小麦加工品质的变化"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 23.9 f 34.0 d 58.4 a 8.4 g 102.0 f 440.0 f
W1N1 27.9 d 34.4 cd 58.3 a 9.8 f 110.5 e 482.5 e
W1N2 31.1 c 34.7 cd 59.0 a 10.3 e 114.0 e 489.5 de
W1N3 32.6 b 35.4 bc 58.7 a 10.8 e 114.0 e 509.0 de
W1N4 32.8 b 35.8 bc 59.4 a 11.4 d 124.5 cd 521.0 cd
W1N5 30.6 c 36.4 ab 59.0 a 10.7 e 121.5 d 516.0 d
W2N0 21.2 g 33.3 d 57.1 a 10.5 e 110.5 e 550.0 bc
W2N1 25.7 e 33.9 d 57.6 a 12.1 c 122.0 d 565.0 b
W2N2 33.5 b 36.1 b 59.4 a 12.7 b 128.0 bc 577.0 ab
W2N3 35.0 a 36.7 ab 59.9 a 13.0 b 132.0 ab 577.5 ab
W2N4 35.3 a 37.9 a 59.8 a 14.1 a 134.5 a 591.5 a
W2N5 34.2 ab 36.4 ab 59.8 a 12.9 b 127.0 c 582.5 ab

表7

2018-2019年度不同水氮互作下小麦加工品质的变化"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 20.2 fg 36.2 e 56.9 bc 28.2 e 94.0 f 531.0 fg
W1N1 22.5 e 39.7 c 57.2 bc 28.6 e 101.0 e 547.0 efg
W1N2 31.0 c 47.9 b 58.6 abc 42.1 b 112.0 d 572.0 de
W1N3 33.2 b 48.5 b 58.9 abc 46.9 a 157.0 b 707.0 a
W1N4 35.5 a 51.6 a 60.2 a 47.0 a 186.0 a 723.0 a
W1N5 35.1 a 51.3 a 60.4 a 43.2 b 161.0 b 631.0 b
W2N0 19.6 g 29.0 g 56.2 c 22.5 f 83.0 g 524.0 g
W2N1 20.8 f 30.8 f 57.4 abc 22.9 f 94.0 f 559.0 ef
W2N2 28.1 d 36.7 e 57.5 abc 33.9 d 104.5 e 577.0 de
W2N3 31.9 c 37.5 de 59.8 ab 35.4 d 132.0 c 614.0 bc
W2N4 33.2 b 38.9 cd 59.5 ab 42.3 b 156.2 b 629.0 b
W2N5 32.7 bc 38.7 cd 58.1 abc 39.0 c 135.3 c 593.0 cd

表8

2019-2020年度不同水氮互作下小麦加工品质的变化"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 27.8 e 31.3 e 58.2 bc 16.8 d 102 cd 497 c
W1N1 28.2 e 33.3 d 59.4 abc 17.2 d 108 c 502 c
W1N2 32.1 d 37.2 b 60.6 abc 19.3 c 110 c 534 b
W1N3 34.4 c 37.9 b 61.9 a 24.3 a 124 b 545 b
W1N4 34.7 bc 39.7 a 62.1 a 24.6 a 132 a 594 a
W1N5 36.3 a 41.0 a 62.2 a 22.1 b 126 b 576 a
W2N0 22.8 f 29.2 f 57.6 c 12.9 e 96 e 392 e
W2N1 23.6 f 29.4 f 58.4 bc 13.2 e 98 de 409 de
W2N2 27.9 e 32.2 de 59.6 abc 17.3 d 100 d 410 de
W2N3 33.5 cd 35.1 c 60.8 abc 18.4 c 101 d 426 d
W2N4 35.5 ab 35.9 c 61.1 ab 19.3 c 106 c 505 c
W2N5 36.0 a 34.9 c 61.2 ab 18.6 c 99 de 498 c
[30] Zhang X T, Huang Y F, Ma X J, Ye Y L. Effects of seeding rate and nitrogen level on dry matter accumulation, translocation and grain yield in two genotypes of winter wheat (Triticum aestivum). Plant Physiol J, 2017, 53: 1067-1076. (in Chinese with English abstract)
[31] 张秀, 朱文美, 代兴龙, 初金鹏, 钤太峰, 贺明荣. 施氮量对强筋小麦产量、氮素利用率和品质的影响. 麦类作物学报, 2018, 38: 963-969.
Zhang X, Zhu W M, Dai X L, Chu J P, Qian T F, He M R. Effect of nitrogen application rate on grain yield, nitrogen use efficiency and grain quality of strong gluten wheat. J Triticeae Crops, 2018, 38: 963-969. (in Chinese with English abstract)
[32] Guo S L, Zhu H H, Dang T H, Wu J S, Liu W Z, Hao M D. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 2012, 189-190: 442-450.
doi: 10.1016/j.geoderma.2012.06.012
[33] Yang X L, Gao W S, Shi Q H, Chen F, Chu Q Q. Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agric Water Manag, 2013, 124: 20-27.
doi: 10.1016/j.agwat.2013.03.017
[34] 李娜娜, 刘园, 谢迎新, 朱云集, 王晨阳, 郭天财. 水氮对冬小麦花后籽粒淀粉含量及产量的影响. 麦类作物学报, 2013, 33: 103-107.
Li N N, Liu Y, Xie Y X, Zhu Y J, Wang C Y, Guo T C. Effects of water and nitrogen interaction on starch content and yield of winter wheat. J Triticeae Crops, 2013, 33: 103-107. (in Chinese with English abstract)
[35] 房琴, 王红光, 马伯威, 李东晓, 李瑞奇, 李雁鸣. 密度和施氮量对超高产冬小麦群体质量和产量形成的影响. 麦类作物学报, 2015, 35: 364-371.
Fang Q, Wang H G, Ma B W, Li D X, Li R Q, Li Y M. Effect of planting density and nitrogen application rate on population quality and yield formation of super high-yielding winter wheat. J Triticeae Crops, 2015, 35: 364-371. (in Chinese with English abstract)
[36] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[37] 赵广才, 万富世, 常旭虹, 刘利华, 杨玉双, 池忠志, 杨丽珍. 不同试点氮肥水平对强筋小麦加工品质性状及其稳定性的影响. 作物学报, 2006, 32: 1498-1502.
Zhao G C, Wan F S, Chang X H, Liu L H, Yang Y S, Chi Z Z, Yang L Z. Effects of nitrogen levels and experimental sites on processing quality characteristics and stability in strong gluten wheat. Acta Agron Sin, 2006, 32: 1498-1502. (in Chinese with English abstract)
[38] 赵广才, 何中虎, 刘利华, 杨玉双, 张艳, 李振华, 张文彪. 肥水调控对强筋小麦中优9507品质与产量协同提高的研究. 中国农业科学, 2004, 37: 351-356.
Zhao G C, He Z H, Liu L H, Yang Y S, Zhang Y, Li Z H, Zhang W B. Study on the co-enhancing regulating effect of fertilization and watering on the main quality and yield in Zhongyou 9507 high gluten wheat. Sci Agric Sin, 2004, 37: 351-356. (in Chinese with English abstract)
[39] 徐恒永, 赵振东, 刘爱峰, 刘建军, 张存良, 毕德锋, 杭新杰, 张怀友. 氮肥对优质专用小麦产量和品质的影响: II.氮肥对小麦品质的影响. 山东农业科学, 2001, (2): 13-17.
Xu H Y, Zhao Z D, Liu A F, Liu J J, Zhang C L, Bi D F, Hang X J, Zhang H Y. Effect of nitrogen fertilizer on yield and quality of good quality special wheat: II. Effect of nitrogen fertilizer on wheat quality. Shandong Agric Sci, 2001, (2): 13-17. (in Chinese with English abstract)
[40] 蔡金华, 陈爱大, 温明星, 李东升, 曲朝喜. 施氮量和种植密度对镇麦168子粒产量与品质的影响. 植物营养与肥料学报, 2013, 19: 1312-1320.
Cai J H, Chen A D, Wen M X, Li D S, Qu C X. Effect of nitrogen application rate and planting density on grain yield and quality of wheat cultivar Zhenmai 168. J Plant Nutr Fert, 2013, 19: 1312-1320. (in Chinese with English abstract)
[41] 周秋峰, 于沐, 张果果, 赵建国. 施肥对小麦品质的调节效应. 中国农学通报, 2016, 32(36): 40-44.
doi: 10.11924/j.issn.1000-6850.casb16040068
Zhou Q F, Yu M, Zhang G G, Zhao J G. Regulation effect of fertilization on wheat quality. Chin Agric Sci Bull, 2016, 32(36): 40-44. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16040068
[1] 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22: 880-885.
Kang S Z. Towards water and food security in China. Chin J Eco-Agric, 2014, 22: 880-885. (in Chinese with English abstract)
[2] 串丽敏, 何萍, 赵同科, 徐新朋, 周卫, 郑怀国. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26:76-86.
Chuan L M, He P, Zhao T K, Xu X P, Zhou W, Zheng H G. Nitrogen cycling and balance for wheat in China. J Appl Ecol, 2015, 26: 76-86. (in Chinese with English abstract)
[3] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[4] Yu Z T, She M Y, Zheng T, Diepeveen D, Islam S, Zhao Y, Zhang Y Q, Tang G X, Zhang Y J, Zhang J J, Blanchard C L, Ma W J. Impact and mechanism of Sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun Biol, 2021, 4: 945.
doi: 10.1038/s42003-021-02458-7 pmid: 34362999
[5] 董志强, 吕丽华, 张丽华, 姚艳荣, 张经廷, 申海平, 郑孟静, 姚海坡, 贾秀领. 长期水氮互作下不同年代冬小麦的产量和光合特性. 麦类作物学报, 2020, 40: 1524-1532.
Dong Z Q, Lyu L H, Zhang L H, Yao Y R, Zhang J T, Shen H P, Zheng M J, Yao H P, Jia X L. Yield and photosynthetic characteristics of winter wheat released in different ages under long-term water-nitrogen interaction. J Triticeae Crops, 2020, 40: 1524-1532. (in Chinese with English abstract)
[6] 黄岭, 高阳, 李新强, 邱新强, 巩文军, 申孝军, 段爱旺. 水分对不同年代冬小麦品种干物质积累和转移的影响. 灌溉排水学报, 2012, 31(6): 75-80.
Huang L, Gao Y, Li X Q, Qiu X Q, Gong W J, Shen X J, Duan A W. Effects of water on dry matter accumulation and translocation of winter wheat cultivars during different decades. J Irrig Drain, 2012, 31(6): 75-80. (in Chinese with English abstract)
[7] 王立秋, 靳占忠, 曹敬山, 王占宇. 水肥因子对小麦籽粒及面包烘烤品质的影响. 中国农业科学, 1997, 30(3): 67-73.
Wang L Q, Jin Z Z, Cao J S, Wang Z Y. Effect of water and fertilizer factors on grain quality and breeding baking quality of wheat. Sci Agric Sin, 1997, 30(3): 67-73. (in Chinese with English abstract)
[8] Mary J G, Jeffrey C S, Katherine O B, Edward S. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci, 2001, 41: 327-335.
doi: 10.2135/cropsci2001.412327x
[9] Zhou J X, Liu D M, Deng X, Zhen S M, Wang Z M, Yan Y M. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). J Sci Food Agric, 2018, 98: 4357-4368.
doi: 10.1002/jsfa.2018.98.issue-11
[10] Peng Y C, Zhao Y, Yu Z T, Zeng J B, Xu D G, Dong J, Ma W J. Wheat quality formation and its regulatory mechanism. Front Plant Sci, 2022, 13: 834654.
doi: 10.3389/fpls.2022.834654
[11] 赵广才, 常旭虹, 刘利华, 杨玉双, 李振华, 周双月, 郭庆侠, 刘月洁. 不同灌水处理对强筋小麦籽粒产量和蛋白质组分含量的影响. 作物学报, 2007, 33: 1828-1833.
Zhao G C, Chang X H, Liu L H, Yang Y S, Li Z H, Zhou S Y, Guo Q X, Liu Y J. Grain yield and protein components responses to irrigation in strong gluten wheat. Acta Agron Sin, 2007, 33: 1828-1833. (in Chinese with English abstract)
[12] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res, 2018, 221: 219-227.
doi: 10.1016/j.fcr.2018.02.011
[13] 沈建辉, 姜东, 戴廷波, 荆奇, 田永超, 曹卫星. 施肥量对专用小麦旗叶光合作用特性及籽粒产量和蛋白质含量的影响. 南京农业大学学报, 2003, 26(1): 1-5.
Shen J H, Jiang D, Dai T B, Jing Q, Tian Y C, Cao W X. Effects of fertilizer levels on photosynthetic characteristics of flag leaf and contents of protein and yield in grain in specialty wheat. J Nanjing Agric Univ, 2003, 26(1): 1-5. (in Chinese with English abstract)
[14] 吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47: 3839-3849.
doi: 10.3864/j.issn.0578-1752.2014.19.012
Lyu L H, Dong Z Q, Zhang J T, Zhang L H, Liang S B, Jia X L, Yao H P. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Sci Agric Sin, 2014, 47: 3839-3849. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.19.012
[15] 蒋家慧, 王洪娴, 衣先众, 蒋晓明. 施氮量对强筋小麦籽粒产量和品质的影响. 中国农学通报, 2004, 20(4): 156-157.
Jiang J H, Wang H X, Yi X Z, Jiang X M. Effect of nitrogen application amount on grain yield and quality in wheat. Chin Agric Sci Bull, 2004, 20(4): 156-157. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.0404156
[16] Liu J X, Zhang J W, Zhu G R, Zhu D, Yan Y M. Effects of water deficit and high N fertilization on wheat storage protein synthesis, gluten secondary structure, and breadmaking quality. Crop J, 2022, 10: 216-223.
doi: 10.1016/j.cj.2021.04.006
[17] 董飞, 李峰, 贾亚琴, 杨峰, 闫秋艳, 鲁晋秀, 申艳婷. 追氮量对黑小麦品种(系)籽粒产量和品质的影响. 核农学报, 2022, 36: 435-444.
doi: 10.11869/j.issn.100-8551.2022.02.0435
Dong F, Li F, Jia Y Q, Yang F, Yan Q Y, Lu J X, Shen Y T. Effect of nitrogen topdressing rate on yield and quality of black-grained wheat varieties (strains). J Nucl Agric Sci, 2022, 36: 435-444. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2022.02.0435
[18] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
doi: 10.3864/j.issn.0578-1752.2020.23.009
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin, 2020, 53: 4816-4834. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.23.009
[19] Wang H Y, Zhang Y T, Chen A Q, Liu H B, Zhai L M, Lei B K, Ren T Z. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Res, 2017, 207: 52-61.
doi: 10.1016/j.fcr.2017.03.002
[20] Zheng X J, Yu Z W, Zhang Y L, Shi Y. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain. Sci Rep, 2020, 10: 3305.
doi: 10.1038/s41598-020-59877-5 pmid: 32094371
[21] 王月福, 姜东, 于振文, 曹卫星. 氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础. 中国农业科学, 2003, 36: 513-520.
Wang Y F, Jiang D, Yu Z W, Cao W X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci Agric Sin, 2003, 36: 513-520. (in Chinese with English abstract)
[22] Jeuffroy M H, Bouchard C. Intensity and duration of nitrogen deficiency on wheat grain number. Crop Sci, 1999, 39: 1385-1393.
doi: 10.2135/cropsci1999.3951385x
[23] 马小艳, 杨瑜, 黄冬琳, 王朝辉, 高亚军, 李永刚, 吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析. 中国农业科学, 2022, 55: 1589-1603.
doi: 10.3864/j.issn.0578-1752.2022.08.010
Ma X Y, Yang Y, Huang D L, Wang Z H, Gao Y J, Li Y G, Lye H. Annual nutrients balance and economic return analysis of wheat with fertilizers reduction and different rotations. Sci Agric Sin, 2022, 55: 1589-1603. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.08.010
[24] Johansson E, Prietolinde M L, Jonsson J. Effects of wheat cultivar and nitrogen application on storage protein composition and bread-making quality. Cereal Chem, 2001, 78: 19-25.
doi: 10.1094/CCHEM.2001.78.1.19
[25] Fuertes T, Aizpurua A, Gonzalez M B, Estavillo J M. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur J Agron, 2010, 33: 52-61.
doi: 10.1016/j.eja.2010.03.001
[26] 郭明明, 董招娣, 易媛, 张明伟, 李银银, 代丹丹, 刘立伟, 朱新开, 郭文善, 赵广才, 彭永欣. 氮肥运筹对不同筋型小麦产量和品质的影响. 麦类作物学报, 2014, 34: 1559-1565.
Guo M M, Dong Z D, Yi Y, Zhang M W, Li Y Y, Dai D D, Liu L W, Zhu X K, Guo W S, Zhao G C, Peng Y X. Effects of nitrogen management on grain yield and quality of wheat cultivars with different gluten types. J Triticeae Crops, 2014, 34: 1559-1565. (in Chinese with English abstract)
[27] 贺明荣, 杨雯玉, 王晓英, 王振林, 杨万立. 不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响. 作物学报, 2005, 31: 1047-1051.
He M R, Yang W Y, Wang X Y, Wang Z L, Yang W L. Effects of different N management modes on grain yield and quality as well as fertilizer N use efficiency of winter wheat. Acta Agron Sin, 2005, 31: 1047-1051. (in Chinese with English abstract)
[28] Zhen S M, Deng X, Xu X X, Liu N N, Zhu D, Wang Z M, Yan Y M. Effect of high-nitrogen fertilizer on gliadin and glutenin subproteomes during kernel development in wheat (Triticum aestivum L.). Crop J, 2020, 18: 38-52.
[29] 张美微, 王晨阳, 郭天财, 马冬云, 朱云集. 施氮量对冬小麦蛋白质品质和面粉色泽的影响. 植物营养与肥料学报, 2012, 18: 1312-1318.
Zhang M W, Wang C Y, Guo T C, Ma D Y, Zhu Y J. Effects of nitrogen fertilization on protein quality and flour color of winter wheat. Plant Nutr Fert Sci, 2012, 18: 1312-1318. (in Chinese with English abstract)
[30] 张小涛, 黄玉芳, 马晓晶, 叶优良. 播种量和施氮量对不同基因型冬小麦干物质积累、运转及产量的影响. 植物生理学报, 2017, 53: 1067-1076.
[1] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[2] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[3] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[4] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[5] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[6] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[7] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[8] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[9] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[10] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[11] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[12] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[13] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[14] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[15] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .