欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1968-1978.doi: 10.3724/SP.J.1006.2023.24152

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对高粱籽粒灌浆及淀粉累积的影响

王媛1,2(), 王劲松1, 董二伟1, 刘秋霞1, 武爱莲1, 焦晓燕1,*()   

  1. 1山西农业大学资源环境学院, 山西太原 030031
    2高粱遗传与种质创新山西省重点实验室, 山西晋中 030600
  • 收稿日期:2022-06-30 接受日期:2022-10-10 出版日期:2023-07-12 网络出版日期:2022-10-19
  • 通讯作者: *焦晓燕, E-mail: jiaoxiaoyan@sxagri.ac.cn
  • 作者简介:E-mail: wangyuan1520@126.com
  • 基金资助:
    本研究由高粱遗传与种质创新山西省重点实验室开放基金项目(2019K-2);财政部和农业农村部: 国家现代农业产业技术体系建设专项(CARS-06-13.5-A20);山西省应用基础青年科技研究基金项目(201901D211559)

Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets

WANG Yuan1,2(), WANG Jin-Song1, DONG Er-Wei1, LIU Qiu-Xia1, WU Ai-Lian1, JIAO Xiao-Yan1,*()   

  1. 1College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2Key Laboratory of Sorghum Genetics & Germplasm Innovation of Shanxi Province, Jinzhong 030600, Shanxi, China
  • Received:2022-06-30 Accepted:2022-10-10 Published:2023-07-12 Published online:2022-10-19
  • Contact: *E-mail: jiaoxiaoyan@sxagri.ac.cn
  • Supported by:
    The Shanxi Province Key Laboratory of Sorghum Genetics & Germplasm Innovation(2019K-2);The China Agriculture Research System of MOF and MARA(CARS-06-13.5-A20);The Science and Technology Research Project for Youth in Shanxi Province(201901D211559)

摘要:

本试验于2019—2020年以汾酒粱1号为材料, 在0、75、150、225、300 和450 kg N hm-2 6个施氮水平下, 于花后每隔7 d采集不同穗位籽粒分析其灌浆特性及淀粉形成过程, 探究不同氮素用量对高粱籽粒灌浆及单粒淀粉累积的影响。结果表明, 与不施氮相比施氮75 kg hm-2显著提高了穗粒数和产量, 但随施氮量的增加产量没有显著变化; 氮素对优势粒(始花日开始2 d内开花的籽粒)和劣势粒(始花日开始5~6 d间开花的籽粒)的单粒重及单粒体积、灌浆特性和单粒淀粉累积的影响趋势基本一致, 施氮条件下单粒重、单粒体积和灌浆速率随施氮量增加而增加, 但不施氮处理的单粒重和单粒体积仍高于各施氮处理, 且缺氮显著延长了灌浆活跃期。籽粒淀粉累积速率与参与籽粒淀粉合成的关键酶ADP-葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合酶(SSS)活性显著相关; 过量施氮(450 kg N hm-2)灌浆前期籽粒中AGPase和SSS的活性最高, 促进了灌浆前期籽粒淀粉累积; 施氮75 kg hm-2灌浆前期籽粒中AGPase和SSS的活性和淀粉累积速率次之; 虽然缺氮降低了灌浆前期籽粒中AGPase和SSS的活性, 但在灌浆后期维持较高活性而延长了灌浆活跃期, 因而后期具有较高的单粒淀粉累积速率, 提升了单粒淀粉累积量和单粒重。

关键词: 高粱, 氮, 优势粒, 劣势粒, 籽粒灌浆, 籽粒形态, 淀粉积累, 籽粒淀粉合成关键酶

Abstract:

To investigate the effect of N application level on grain-filling and starch accumulation in individual sorghum grains, sorghum variety Fenjiuliang 1 was used as the experimental material in 2019 and 2020. Six N rates of 0, 75, 150, 225, 300, and 450 kg N hm-2 were applied before sowing to experimental plots in Shanxi, China. To analyze sorghum grain-filling and starch accumulation by the Richards’ growth equation, the superior and inferior spikelets were sampled at seven days intervals at each sampling from anthesis to maturity. The rational N application level (75 kg N hm-2) showed the maximum grain number per panicle resulting in the maximum yield per hectare. For both superior and inferior spikelets, N had similar effects on grain weight, grain morphology structure, the characteristics of grain-filling, and grain starch accumulation. The grain weight, grain volume, and grain-filling rate increased with the increase of N application rate, whereas the maximum grain weight and grain volume was obtained with the zero N treatment. The grain starch accumulation rate was highly correlated with the activity of ADP-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS). Compared to the zero N treatment, N application enhanced grain starch accumulation rate at early grain-filling stage and grain-filling rate, which may be due to the increased AGPase and SSS activity at the early grain-filling stage. Compared with rational N (75 kg N hm-2), excessive N (450 kg N hm-2) promoted grain starch accumulation by enhancing the activity of AGPase and SSS at the early grain filling stage, whereas zero N application enhanced sorghum grain weight and grain starch accumulation by extending the grain-filling duration and enhancing the activity of key enzymes in grain involved in sucrose-to-starch conversion at the late grain-filling stage.

Key words: sorghum, nitrogen, superior grains, inferior grains, grain filling, grain morphology, starch accumulation, starch biosynthesis enzymes

图1

2019年和2020年生长季日平均气温和降雨量"

图2

不同施氮水平下的高粱产量(a)和每穗粒数(b) N0: 施氮量为0 kg hm-2; N75: 施氮量为75 kg hm-2; N150: 施氮量为150 kg hm-2; N225: 施氮量为225 kg hm-2; N300: 施氮量为300 kg hm-2; N450: 施氮量为450 kg hm-2。不同字母表示同一年度不同处理间在0.05概率水平差异显著。"

表1

不同施氮水平下高粱籽粒特点及籽粒灌浆特性"

年份
Year
穗位
Spikelet
position
处理
N treatment
(kg hm-2)
单粒重
Weight per
grain
(mg)
籽粒体积
Volume per grain
(mm3)
籽粒密度
Grain
density
(g L-1)
活跃灌浆期
Active grain-filling period (d)
灌浆速率
Grain-filling
rate
(mg grain-1 d-1)
R2
2019 优势粒
Superior spikelets
0 20.3±0.17 d 16.83±0.17 d 1192.9±33.2 a 36.4±0.8 c 0.601±0.020 a 0.995**
75 18.6±0.11 ab 15.00±0.50 b 1240.0±24.7 ab 33.2±1.2 b 0.604±0.016 a 0.998**
150 18.1±0.30 a 13.40±0.23 a 1327.1±11.2 c 29.2±0.4 a 0.638±0.012 b 0.996**
225 18.0±0.20 a 14.83±0.09 b 1245.5±11.2 ab 29.9±1.1 a 0.623±0.018 b 0.997**
300 18.9±0.20 bc 14.87±0.13 b 1238.7±7.9 ab 31.8±1.1 ab 0.627±0.021 b 0.996**
450 19.3±0.22 c 15.82±0.22 c 1261.0±4.1 b 31.5±0.6 ab 0.637±0.025 b 0.997**
劣势粒
Inferior spikelets
0 18.2±0.18 c 15.50±0.29 c 1215.3±18.9 a 44.0±0.5 c 0.416±0.012 a 0.997**
75 16.7±0.07 a 14.67±0.73 bc 1192.6±43.1 a 36.9±0.9 a 0.472±0.014 cd 0.998**
150 16.7±0.10 a 12.92±0.36 a 1333.5±43.7 b 38.1±0.9 ab 0.452±0.013 b 0.996**
225 16.7±0.03 a 14.33±0.17 bc 1192.8±17.0 a 39.3±0.2 b 0.443±0.012 b 0.994**
300 16.9±0.03 a 14.00±0.12 ab 1239.4±12.4 ab 39.0±0.5 b 0.461±0.017 bc 0.995**
450 17.6±0.26 b 14.67±0.44 bc 1239.1±24.9 ab 38.6±0.2 ab 0.481±0.022 c 0.998**
2020 优势粒
Superior spikelets
0 20.4±0.26 c 18.50±0.58 c 1103.0±41.2 a 40.6±0.3 c 0.578±0.013 a 0.996**
75 18.8±0.11 a 15.67±0.33 b 1200.8±24.9 ab 36.8±0.4 ab 0.623±0.014 b 0.997**
150 18.9±0.12 a 14.00±0.50 a 1352.0±45.4 c 36.6±0.5 ab 0.642±0.018 b 0.996**
225 18.7±0.17 a 14.83±0.60 ab 1264.2±60.8 bc 37.7±0.6 b 0.616±0.011 b 0.996**
300 19.3±0.19 ab 15.00±0.50 ab 1288.5±34.3 bc 35.5±0.4 a 0.591±0.018 b 0.997**
450 19.8±0.24 b 15.33±0.33 ab 1289.9±38.9 bc 35.7±0.4 a 0.608±0.014 b 0.995**
劣势粒
Inferior spikelets
0 18.8±0.06 c 16.83±0.33 b 1119.4±18.1 a 46.3±0.4 d 0.400±0.009 a 0.994**
75 17.6±0.24 a 14.33±0.33 a 1232.0±30.2 b 42.4±0.3 bc 0.408±0.008 a 0.996**
150 18.3±0.28 b 14.83±0.44 a 1234.1±30.8 b 40.3±0.9 a 0.451±0.011 a 0.998**
225 18.1±0.05 ab 14.67±0.44 a 1233.3±34.0 b 40.8±0.7 ab 0.437±0.010 ab 0.996**
300 18.0±0.08 ab 14.83±0.17 a 1215.7±8.9 b 40.6±0.1 a 0.438±0.013 b 0.995**
450 19.1±0.11 c 15.17±0.17 a 1261.3±7.2 b 43.1±0.4 c 0.428±0.014 b 0.995**
方差分析ANOVA
Panicle position (P) ** ** * ** **
N treatment (N) ** ** ** ** **
Year (Y) ** ** NS ** **
N×P * NS NS NS NS
N×Y * * * NS NS
P×Y ** NS NS ** NS
N×P×Y NS NS NS ** NS

图3

不同施氮量下高粱优势粒(a, c, e, g)和劣势粒(b, d, f, h)的淀粉累积(a, b, c, d)和淀粉累积速率(e, f, g, h) 根据Richards方程拟合淀粉累积速率。处理同图2。"

表2

花后14~28 d不同施氮量对高粱优势粒淀粉相关酶活性的影响(2019年)"

花后天数 Days post-anthesis 处理
N treatment
(kg hm-2)
酶活性Enzyme activity
ADP-葡萄糖焦磷酸化酶
ADP-glucose
pyrophosphorylase
(μmol grain-1 h-1)
可溶性淀粉合酶
Soluble starch
synthase
(μmol grain-1 h-1)
颗粒结合淀粉合酶
Granule-bound
starch synthase
(μmol grain-1 h-1)
淀粉分支酶
Starch branching
enzyme
(U grain-1 min-1)
14 d N0 0.258±0.007 a 0.21±0.013 a 0.13±0.0061 b 185.8±14.2 ab
N75 0.346±0.026 a 0.27±0.011 a 0.1±0.005 a 233.6±12.4 b
N450 0.549±0.025 b 0.37±0.035 b 0.16±0.0038 c 151.3±23.1 a
21 d N0 0.211±0.007 a 0.23±0.02 ab 0.18±0.006 b 406.5±15.2 b
N75 0.227±0.009 a 0.20±0.022 a 0.14±0.003 a 318.1±21.1 a
N450 0.258±0.013 b 0.31±0.033 b 0.20±0.004 c 327.8±5.2 a
28 d N0 0.200±0.011 b 0.18±0.013 a 0.14±0.002 a 452.1±25.7 b
N75 0.105±0.041 a 0.15±0.013 a 0.13±0.005 a 441.7±8.3 b
N450 0.128±0.036 a 0.19±0.012 a 0.13±0.011 a 367.2±9.5 a

图4

不同施氮量下高粱优势粒AGPase (a)、SSS (b)、GBSS (c)和SBE (d)的酶活性(2019年) 处理同图2。"

表3

高粱优势粒淀粉快速累积时期(花后7~35 d) AGPase、SSS、GBSS和SBE的酶活性与淀粉累积速率的相关性"

酶活性
Activity of enzymes
淀粉累积速率 Starch accumulation rate
N0 N75 N450 所有处理All treatment
ADP-葡萄糖焦磷酸化酶ADP-glucose pyrophosphorylase 0.935* 0.979** 0.950* 0.989**
可溶性淀粉合酶Soluble starch synthase 0.868 0.977** 0.976** 0.960**
颗粒结合淀粉合酶Granulebound starch synthase 0.631 0.412 0.785 0.652
淀粉分支酶Starch branching enzyme 0.220 0.240 0.065 0.166
[1] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[2] Gu J, Li Z, Mao Y, Struik P, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: S0168-9452(18)30135-3 pmid: 30080619
[3] Heyl A, Ramireddy E, Brenner W G, Riefler M, Allemeersch J, Schmülling T.The transcriptional repressor arr1-srdx suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiol, 2008, 147: 1380.
[4] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳交超级稻甬优538的穗部特征及籽粒灌浆特性. 作物学报, 2015, 41: 1858-1869.
doi: 10.3724/SP.J.1006.2015.01858
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Panicle traits and grain-filling characteristics of japonica/indica hybrid super rice Yongyou 538. Acta Agron Sin, 2015, 41: 1858-1869. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01858
[5] Fang H, Gu X, Jiang T, Yang J, Li Y, Huang P, Chen P, Yang J. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China. Soil Tillage Res, 2020, 199: 104546.
doi: 10.1016/j.still.2019.104546
[6] Liu X, Gu W, Li C, Li J, Wei S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang province, China. J Integr Agric, 2021, 20: 511-526.
doi: 10.1016/S2095-3119(20)63403-7
[7] Triboï E, Triboï-Blondel A M. Productivity and grain or seed composition: a new approach to an old problem. Eur J Agron, 2002, 16: 163-186.
doi: 10.1016/S1161-0301(01)00146-0
[8] Ookawa T, Naruoka Y, Sayama A, Hirasawa T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci, 2004, 44: 2107-2115.
doi: 10.2135/cropsci2004.2107
[9] Muchow R C, Sinclair T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci, 1994, 34: 721-727.
doi: 10.2135/cropsci1994.0011183X003400030022x
[10] Peng S, Cassman K G, Kropff M J, Peng S B. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics. Crop Sci, 1995, 35: 1627-1630.
doi: 10.2135/cropsci1995.0011183X003500060018x
[11] Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[12] Gregersen P L, Culetic A, Boshian L, Krupinska K. Plant senescence and crop productivity. Plant Mol Biol, 2013, 82: 603-622.
doi: 10.1007/s11103-013-0013-8 pmid: 23354836
[13] Guo Y, Gan S. Translational researches of leaf senescence for enhancing plant productivity and quality. J Exp Bot, 2014, 65: 3901-3913.
doi: 10.1093/jxb/eru248
[14] Assefa Y, Roozeboom K, Thompson C, Schlegel A, Stone L, Lingenfelser J. Corn and Sorghum Comparison:All Things Considered. Waltham: Academic Press, 2013. pp 71-86.
[15] Subbarao G V, Arango J, Masahiro K, Hooper A M, Yoshihashi T, Ando Y, Nakahara K, Deshpande S, Ortiz-Monasterio I, Ishitani M, Peters M, Chirinda N, Wollenberg L, Lata J C, Gerard B, Tobita S, Rao I M, Braun H J, Kommerell V, Tohme J, Iwanaga M. Genetic mitigation strategies to tackle agricultural GHG emissions: the case for biological nitrification inhibition technology. Plant Sci, 2017, 262: 165-168.
doi: S0168-9452(17)30095-X pmid: 28716411
[16] Oosterom E J, Chapman S C, Borrell A K, Broad I J, Hammer G L. Functional dynamics of the nitrogen balance of sorghum. II: Grain filling period. Field Crops Res, 2010, 115: 29-38.
doi: 10.1016/j.fcr.2009.09.019
[17] Marsalisa M A, Angadia S V, Contreras-Goveab F E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res, 2010, 116: 52-57.
doi: 10.1016/j.fcr.2009.11.009
[18] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879.
doi: 10.1093/jxb/42.7.871
[19] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2010, 30: 261-270.
doi: 10.1023/A:1006356125418
[20] Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137-149.
doi: 10.1007/s00425-008-0725-1 pmid: 18340459
[21] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-192.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis in the process of grain filling in rice. Acta Agron Sin, 1998, 14: 182-192. (in Chinese with English abstract)
[22] Worch S, Rajesh K, Harshavardhan V T, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder M S, Sreenivasulu N. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol, 2011, 11: 1.
doi: 10.1186/1471-2229-11-1 pmid: 21205309
[23] Duffus C M. Control of starch biosynthesis in developing cereal grains. Biochem Soc Trans, 1992, 20: 13-18.
doi: 10.1042/bst0200013
[24] Emest M J, Bowsher C G, Hedley C, Hedley C, Burrell M M, Scrase-Field E S E, Tetlow I J. Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot, 2003, 54: 569-575.
pmid: 12508067
[25] Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation. Biochem Soc Trans, 1991, 19: 539-547.
doi: 10.1042/bst0190539
[26] Smith A M, Denyer K. Starch synthesis in developing pea embryos. New Phytol, 1992, 122: 21-33.
doi: 10.1111/j.1469-8137.1992.tb00049.x pmid: 33874037
[27] Déjardin A, Rochat C, Wuilléme S, Boutin J P. Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environ, 2017, 20: 1421-1430.
doi: 10.1046/j.1365-3040.1997.d01-32.x
[28] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628.
pmid: 15701658
[29] Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci, 2003, 164: 873-881.
doi: 10.1016/S0168-9452(03)00076-1
[30] Tuncel A, Okita T W. Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci, 2013, 211: 52-60.
doi: 10.1016/j.plantsci.2013.06.009 pmid: 23987811
[31] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod Sci, 2007, 10: 442-450.
doi: 10.1626/pps.10.442
[32] Nakamura Y. Towards a better understanding of the metabolite system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718-725.
doi: 10.1093/pcp/pcf091
[33] Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839.
doi: 10.1093/oxfordjournals.pcp.a077813
[34] Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Technol, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516
[35] Zhang C, Jiang D, Liu F, Cai J, Dai T, Cao W. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. J Cereal Sci, 2010, 51: 226-233.
doi: 10.1016/j.jcs.2009.12.002
[36] Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Technol, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516
[37] Zhao F, Jing L, Wang D, Bao F, Lu W, Wang G. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep (UK), 2008, 8: 6343.
doi: 10.1038/s41598-018-23977-0
[38] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300.
doi: 10.1093/jxb/10.2.290
[39] Schaffer A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639
[40] Subbarao G V, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir H A K M, Deshpande S P, Hash C T, Sahrawat K L. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil, 2013, 366: 243-259.
doi: 10.1007/s11104-012-1419-9
[41] Hossain A K M Z, Subbarao G V, Pearse S J, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol, 2008, 180: 442-451.
doi: 10.1111/j.1469-8137.2008.02576.x pmid: 18657214
[42] Muchow R C. Nitrogen utilization efficiency in maize and grain sorghum. Field Crops Res, 1998, 56: 209-216.
doi: 10.1016/S0378-4290(97)00132-9
[43] Schlegel A, Havlin J. Irrigated grain sorghum response to 55 years of nitrogen, phosphorus, and potassium fertilization. Agron J, 2021, 113: 464-477.
doi: 10.1002/agj2.v113.1
[44] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01020
[45] Zhang T, Zhu J, Wassmann R.Responses of rice yields to recent climate change in China: an empirical assessment based on long-term observations at different spatial scales (1981-2005). Agric For Meteorol, 2010, 150: 1128-1137.
doi: 10.1016/j.agrformet.2010.04.013
[46] Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 15: 1091-1107.
[47] Jiang Q, Du Y, Tian X, Wang Q, Xiong R, Xu G, Yan C, Ding Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. Eur J Agron, 2016, 74: 185-192.
doi: 10.1016/j.eja.2015.11.006
[48] Yang J, Zhang J, Wang Z, Xu G, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[49] Li Q, Du L, Feng D, Ren Y, Li Z, Kong F, Yuan J. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. Crop J, 2020, 8: 990-1001.
doi: 10.1016/j.cj.2020.04.001
[50] Slafer G A, Savin R. Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crops Res, 1994, 37: 39-49.
[51] Acreche M M, Slafer G A. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Res, 2006, 98: 52-59.
doi: 10.1016/j.fcr.2005.12.005
[52] 杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36: 2011-2019.
doi: 10.3724/SP.J.1006.2010.02011
Yang J C. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin, 2010, 36: 2011-2019. (in Chinese with English abstract)
[53] Wei S, Wang X, Li G, Qin Y, Jiang D, Dong S. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Front Plant Sci, 2019, 10: 180.
doi: 10.3389/fpls.2019.00180 pmid: 30881365
[54] Li G, Hu Q, Shi Y, Cui K, Nie L, Huang J, Peng S. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front Plant Sci, 2018, 9: 1128.
doi: 10.3389/fpls.2018.01128 pmid: 30108604
[55] Yu W, Tan X, Zou W, Hu Z, Fox G, Gidley M, Gilbert R. Relationships between protein content, starch molecular structure and grain size in barley. Carbohyd Polym, 2017, 155: 271-279.
doi: S0144-8617(16)31030-X pmid: 27702512
[56] Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In: DaviesP J,eds. Plant Hormones. Dordrecht: Kluwer Academic Publishers, 1995. pp 649-670.
[57] Jameson P E, Song J. Cytokinin: a key driver of seed yield. J Exp Bot, 2005, 67: 593-606.
doi: 10.1093/jxb/erv461
[58] Pan J, Cui K, Wei D, Huang J, Xiang J, Nie L. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plant, 2011, 141: 321-331.
doi: 10.1111/j.1399-3054.2010.01441.x pmid: 21175644
[1] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[2] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[3] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[4] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[5] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[6] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[7] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[8] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[9] 陆梦琪, 谢若涵, 李想, 杨明冲, 何紫薇, 高杰, 赵晓燕, 沈祥陵, 陈燕, 王继斌, 胡利华, 段明政, 王令强. 基于“LabelmeP1.0”提取的高粱维管束参数与农艺性状关联研究[J]. 作物学报, 2023, 49(7): 1954-1967.
[10] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[11] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[12] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[13] 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385.
[14] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[15] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .