欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3129-3143.doi: 10.3724/SP.J.1006.2024.41026

• 耕作栽培·生理生化 • 上一篇    下一篇

绿肥对减量施氮小麦籽粒产量和氮素利用的补偿机制

韦金贵(), 毛守发, 江俞欣, 樊志龙, 胡发龙, 柴强(), 殷文()   

  1. 干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2024-03-27 接受日期:2024-06-20 出版日期:2024-12-12 网络出版日期:2024-07-08
  • 通讯作者: *柴强, E-mail: chaiq@gsau.edu.cn; 殷文, E-mail: yinwen@gsau.edu.cn
  • 作者简介:E-mail: weijg17797691770@163.com
  • 基金资助:
    国家自然科学基金项目(U21A20218);国家自然科学基金项目(32372238);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-22-G-12);甘肃省科技计划项目(23JRRA704);甘肃省科技计划项目(23JRRA1407);甘肃农业大学优秀博士学位论文培育基金项目(YB2024002)

Compensation mechanism of green manure on grain yield and nitrogen uptake of wheat with reduced nitrogen supply

WEI Jin-Gui(), MAO Shou-Fa, JIANG Yu-Xin, FAN Zhi-Long, HU Fa-Long, CHAI Qiang(), YIN Wen()   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-03-27 Accepted:2024-06-20 Published:2024-12-12 Published online:2024-07-08
  • Contact: *E-mail: chaiq@gsau.edu.cn; E-mail: yinwen@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A20218);National Natural Science Foundation of China(32372238);China Agriculture Research System of MOF and MARA(CARS-22-G-12);Science and Technology Program of Gansu Province(23JRRA704);Science and Technology Program of Gansu Province(23JRRA1407);Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University(YB2024002)

摘要:

针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题, 探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应, 以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行, 2020—2022年期间采集数据。试验采用裂区设计, 主区设4种绿肥种植模式, 即麦后分别复种毛叶苕子混播箭筈豌豆(HCV)、箭筈豌豆(CV)、油菜(R)和麦后休闲(F); 副区为3种施氮水平: 试区习惯施氮量(N3, 180 kg hm-2)、习惯施氮减量20% (N2, 144 kg hm-2)、习惯施氮减量40% (N1, 108 kg hm-2)。研究表明, 习惯施氮减量20%和40%显著降低了小麦籽粒产量和氮素吸收, 但麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的籽粒产量和氮素吸收损失, 且麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高小麦籽粒产量21.4%和氮素吸收6.9% (P < 0.05)。麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的氮素利用率损失, 且其结合减量施氮20%氮素利用率提高13.4% (P < 0.05)。其补偿机制归因于: (1) 麦后复种毛叶苕子混播箭筈豌豆在减量施氮40%条件下可补偿小麦氮素吸收速率, 提高氮素净同化速率34.3% (P < 0.05), 维持穗部氮素分配, 增加茎氮素转运率6.6% (P < 0.05)。(2) 与麦后休闲传统施氮量相比, 麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高氮素平均吸收速率和氮素净同化速率7.2%和34.1% (P < 0.05), 增加灌浆初期至成熟期穗氮素分配6.7% (P < 0.05), 提高叶、茎氮素对穗的转运贡献率17.8%、8.9% (P < 0.05)。因此, 在干旱绿洲灌区, 麦后复种毛叶苕子混播箭筈豌豆是实现小麦减氮40%的可行措施, 麦后复种毛叶苕子混播箭筈豌豆结合减氮20%可通过提高小麦氮素吸收速率和氮素净同化率, 提高叶、茎对穗的转运贡献率从而促进穗部氮素分配, 实现小麦产量和氮素利用率双提升。

关键词: 麦后复种绿肥, 减量施氮, 籽粒产量, 氮素利用率, 补偿效应

Abstract:

Long-term continuous cropping, excessive nitrogen input, and low nitrogen use efficiency are prevalent issues in wheat production in the Northwest Oasis irrigation area. This study examined the compensatory mechanism on grain yield and nitrogen utilization by reducing nitrogen input in wheat and multi-cropping of green manure after wheat harvest. The goal was to provide a theoretical basis for developing efficient wheat production technologies with reduced nitrogen input. This long-term field experiment, initiated in 2018, collected data from 2020 to 2022. The main plot included four green manures: multi-cropped common vetch mixed with hairy vetch (HCV), common vetch (CV), rapeseed (R), and fallow (F) after the previous wheat harvest. Subplots applied three nitrogen rates: the local conventional rate (N3, 180 kg hm-2), reduced by 20% (N2, 144 kg hm-2), and reduced by 40% (N1, 108 kg hm-2). Our results indicated that reducing conventional nitrogen by 20% and 40% significantly decreased both grain yield and nitrogen uptake. However, multi-cropped hairy vetch mixed with common vetch after wheat harvest could compensate for the yield and nitrogen uptake losses caused by a 40% nitrogen reduction. When combined with a 20% nitrogen reduction, grain yield and nitrogen uptake increased by 21.4% and 6.9%, respectively (P < 0.05). Additionally, this cropping pattern compensated for the decreased nitrogen use efficiency resulting from a 40% nitrogen reduction and, when combined with a 20% nitrogen reduction, enhanced nitrogen use efficiency by 13.4% (P < 0.05). The compensation mechanism was attributed to: (1) Under a 40% nitrogen reduction, multi-cropped hairy vetch mixed with common vetch compensated for nitrogen uptake rate, increased net nitrogen assimilation rate by 34.3% (P < 0.05), maintained nitrogen distribution in the ear, and enhanced the nitrogen transportation rate from the stem by 6.6% (P < 0.05). (2) Compared with fallow after wheat harvest and the conventional nitrogen application rate, multi-cropped hairy vetch mixed with common vetch under a 20% nitrogen reduction increased mean nitrogen uptake efficiency and net nitrogen assimilation rate by 7.2% and 34.1%, respectively (P < 0.05). It also improved nitrogen distribution in the ear from early filling to maturity stages by 6.7% (P < 0.05) and enhanced the contribution rate of nitrogen transportation from stem and leaf to ear by 17.8% and 8.9%, respectively (P < 0.05). Therefore, multi-cropped hairy vetch mixed with common vetch after wheat harvest is a viable measure to reduce nitrogen fertilizer input. When combined with a 20% nitrogen reduction, it can increase grain yield and nitrogen use efficiency in wheat by improving nitrogen uptake rate, net nitrogen assimilation rate, and the contribution rate of nitrogen transportation from leaf and stem to ear, thereby promoting nitrogen distribution in the ear in arid oasis irrigated areas.

Key words: multiple cropped green manure after wheat harvest, nitrogen reduction, grain yield, nitrogen use efficiency, compensation effect

表1

不同处理绿肥生物量"

2019 2020 2021
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
HCVN1 4413 cd HCVN1 4322 cd HCVN1 4238 de
HCVN2 5664 a HCVN2 5126 a HCVN2 5535 a
HCVN3 4907 b HCVN3 4874 ab HCVN3 5024 b
CVN1 4065 de CVN1 4103 de CVN1 3894 e
CVN2 4717 bc CVN2 4645 abc CVN2 4790 bc
CVN3 4559 bc CVN3 4394 bcd CVN3 4457 cd
RN1 3102 f RN1 2892 g RN1 3074 f
RN2 3767 e RN2 3462 f RN2 4159 de
RN3 3895 e RN3 3724 ef RN3 4081 e

图1

复种绿肥对减氮小麦籽粒产量的影响 F、HCV、CV和R分别代表麦后休闲、复种毛叶苕子混播箭筈豌豆、箭筈豌豆和油菜, N3、N2和N1依次为试区习惯施氮量、习惯施氮减量20%和40%。同一年份不同字母表示处理间在P < 0.05水平差异显著。"

图2

复种绿肥条件下减氮小麦氮素积累动态 图中不同小写字母表示同一年不同处理间差异显著(P < 0.05)。处理同图1。"

图3

不同复种绿肥模式对小麦经济施氮量的影响"

图4

不同复种模式及减氮下小麦氮素利用率和氮肥偏生产力差异 图中不同小写字母表示同一年不同处理间差异显著(P < 0.05)。处理同图1。"

表2

复种绿肥条件下减氮小麦氮素吸收效率和氮素净同化速率"

年份
Year
绿肥
Green manure
施氮
Nitrogen level
回归方程
Regression equation
R2 氮素最大吸收速率
Maximum uptake
rate of nitrogen
(Vmax, kg hm‒2 d‒1)
氮素最大吸收
速率出现天数 Days of NMUR
(Tm, d)
氮素平均吸收速率
Mean uptake rate of nitrogen
(Vmean, kg N hm‒2 d‒1)
氮素净同化速率
Net assimilation rate of nitrogen (NNAR, g m‒2 d‒1)
2020 F N1 Y=152/(1+e2.066-0.052t) 0.990 1.91 f 35.5 bcd 1.34 d 0.366 e
N2 Y=153/(1+e1.830-0.056t) 0.991 2.14 def 34.2 cd 1.31 d 0.331 f
N3 Y=181/(1+e1.926-0.053t) 0.994 2.41 cd 35.6 bcd 1.56 bc 0.377 e
HCV N1 Y=171/(1+e1.797-0.052t) 0.999 2.22 cde 37.0 ab 1.59 b 0.484 a
N2 Y=192/(1+e2.283-0.061t) 0.957 2.94 a 37.8 a 1.55 bc 0.439 b
N3 Y=188/(1+e2.242-0.062t) 0.994 2.93 a 34.8 cd 1.70 a 0.465 ab
CV N1 Y=152/(1+e1.625-0.039t) 0.998 1.49 g 37.8 a 1.36 d 0.379 de
N2 Y=195/(1+e2.079-0.060t) 0.998 2.94 a 34.8 bcd 1.55 bc 0.421 c
N3 Y=188/(1+e1.876-0.058t) 0.989 2.73 ab 32.7 d 1.54 bc 0.401 d
R N1 Y=149/(1+e1.964-0.052t) 0.982 1.93 ef 37.1 ab 1.29 d 0.350 ef
N2 Y=174/(1+e1.868-0.057t) 0.998 2.50 bc 35.0 cd 1.48 c 0.385 de
N3 Y=181/(1+e1.934-0.060t) 0.930 2.73 ab 34.9 cd 1.56 bc 0.387 de
2021 F N1 Y=150/(1+e2.090-0.052t) 0.992 1.95 g 40.2 a 1.33 f 0.390 g
N2 Y=162/(1+e2.385-0.067t) 0.999 2.72 cd 35.6 bcd 1.54 de 0.426 fg
2021 F N3 Y=183/(1+e1.931-0.056t) 0.953 2.56 de 35.0 cde 1.58 cd 0.422 fg
HCV N1 Y=178/(1+e2.056-0.051t) 0.998 2.26 f 40.6 a 1.61 cd 0.602 ab
N2 Y=197/(1+e2.356-0.060t) 0.992 2.95 b 40.1 a 1.82 a 0.634 a
N3 Y=194/(1+e1.823-0.056t) 0.995 2.73 c 32.4 e 1.64 c 0.522 cd
CV N1 Y=156/(1+e2.157-0.062t) 0.990 2.40 ef 35.2 cde 1.41 ef 0.459 ef
N2 Y=192/(1+e2.267-0.062t) 0.998 2.95 b 37.2 bc 1.77 ab 0.551 bc
N3 Y=191/(1+e2.212-0.067t) 0.995 3.18 a 33.1 de 1.75 ab 0.505 cde
R N1 Y=156/(1+e2.162-0.056t) 0.984 2.18 fg 38.4 ab 1.40 ef 0.430 fg
N2 Y=177/(1+e2.083-0.063t) 0.994 2.77 c 33.3 de 1.59 cd 0.450 efg
N3 Y=187/(1+e2.193-0.065t) 0.987 3.03 ab 34.1 de 1.70 b 0.464 def
2022 F N1 Y=154/(1+e2.130-0.060t) 0.992 2.35 de 35.8 abc 1.31 e 0.376 e
N2 Y=151/(1+e2.020-0.056t) 0.967 2.12 ef 35.9 abc 1.41 de 0.379 e
N3 Y=173/(1+e2.153-0.059t) 0.967 2.57 cd 36.2 abc 1.56 b 0.397 de
HCV N1 Y=166/(1+e1.617-0.067t) 0.992 2.78 bc 24.7 d 1.49 c 0.519 a
N2 Y=189/(1+e2.441-0.072t) 0.993 3.39 a 34.1 abc 1.67 a 0.530 a
N3 Y=184/(1+e2.278-0.056t) 0.997 3.01 b 35.5 abc 1.68 a 0.497 ab
CV N1 Y=166/(1+e2.470-0.065t) 0.927 2.70 bcd 38.1 a 1.35 e 0.422 cde
N2 Y=182/(1+e2.350-0.063t) 0.992 2.84 bc 38.3 a 1.56 b 0.460 bc
N3 Y=180/(1+e2.326-0.062t) 0.998 2.83 bc 38.2 a 1.57 ab 0.439 cd
R N1 Y=145/(1+e1.871-0.053t) 0.983 1.94 f 36.6 ab 1.43 d 0.426 cde
N2 Y=172/(1+e1.858-0.058t) 0.992 2.48 cd 32.2 c 1.56 b 0.426 cde
N3 Y=181/(1+e1.917-0.059t) 0.937 2.68 bcd 32.7 bc 1.67 a 0.440 cd
显著性(P值) Significance (P-value)
绿肥 Green manure (G) * * ** **
施氮Nitrogen application (N) ** ** ** **
绿肥×施氮G×N NS ** ** **

图5

复种绿肥条件下减氮小麦各器官氮素分配比率"

表3

复种绿肥条件下减氮小麦各器官氮素对穗转运及其贡献率"

年份
Year
绿肥
Green manure
施氮水平
Nitrogen level
叶 Leaf 茎 Stem
NTQ
(kg hm‒2)
NTR
(%)
SCR
(%)
NTQ
(kg hm‒2)
NTR
(%)
SCR
(%)
2020 F N1 20.9 h 45.4 f 22.3 e 17.9 f 48.7 f 19.3 e
N2 36.5 e 64.5 bc 24.9 de 27.3 de 63.4 e 25.9 c
N3 40.3 c 65.8 b 30.7 b 33.0 c 71.1 c 25.2 c
HCV N1 32.1 f 49.6 ef 29.0 c 29.9 d 72.9 b 27.0 c
N2 43.2 b 70.9 ab 33.9 ab 32.2 cd 67.1 d 27.7 b
N3 48.8 a 76.3 a 35.5 a 38.9 a 80.2 a 30.7 a
CV N1 29.6 g 52.4 e 30.4 b 26.0 e 64.4 de 26.6 c
N2 32.5 f 54.2 de 34.7 a 34.4 b 77.5 ab 26.4 c
N3 45.2 b 68.3 ab 32.7 b 37.9 ab 80.1 a 27.5 b
R N1 30.2 fg 63.4 c 27.5 cd 26.2 e 71.7 c 24.0 cd
N2 38.5 d 60.5 cd 31.4 b 31.5 cd 66.4 d 23.4 d
N3 44.2 b 63.8 bc 34.0 ab 38.1 ab 76.4 ab 27.2 b
2021 F N1 23.9 g 53.7 d 24.1 e 20.4 f 46.4 e 20.7 g
N2 37.8 cd 65.3 bc 33.4 ab 31.9 d 56.4 d 28.1 d
N3 34.6 de 60.5 cd 26.1 d 33.6 d 61.4 d 25.2 ef
HCV N1 30.5 ef 54.2 d 31.2 bc 30.1 de 58.2 d 28.1 d
N2 36.8 cd 63.5 c 33.5 ab 36.8 bc 64.1 cd 29.6 c
N3 47.7 ab 71.5 ab 32.7 b 47.7 a 80.8 a 32.7 a
CV N1 35.5 de 66.1 bc 25.4 de 32.0 d 62.8 cd 25.0 ef
N2 40.3 cd 62.7 c 30.5 c 35.9 cd 64.4 cd 27.2 e
N3 49.7 a 77.3 a 34.2 a 45.9 a 71.4 bc 31.6 ab
R N1 28.9 fg 63.8 c 25.7 de 27.4 e 56.7 d 24.4 f
N2 42.3 bc 69.3 b 27.0 cd 37.3 bc 63.0 cd 26.9 e
N3 47.2 ab 69.8 b 33.7ab 42.7 ab 75.4 ab 32.7 a
2022 F N1 33.3 d 63.6 f 24.2 f 28.4 e 52.9 e 23.0 d
N2 37.2 cd 66.1 ef 29.1 d 29.7 de 52.5 e 25.2 cd
N3 36.1 d 61.1 f 32.4 c 32.2 d 55.7 de 29.2 b
2022 HCV N1 37.2 cd 64.4 f 27.7 ef 35.6 c 69.5 ab 23.5 d
N2 51.4 a 86.3 a 36.9 a 44.5 a 72.7 a 29.4 b
N3 49.5 a 81.2 ab 31.6 cd 44.4 a 76.7 a 28.2 bc
CV N1 37.2 cd 67.9 e 28.3 e 32.9 d 63.0 c 24.9 cd
N2 46.6 ab 72.5 d 33.0 b 45.3 a 75.7 a 32.0 a
N3 50.9 a 82.1 ab 35.0 ab 44.8 a 73.4 a 31.0 ab
R N1 36.1 d 68.7 e 31.6 cd 32.8 d 59.4 d 28.9 b
N2 42.5 bc 78.0 bc 31.1 cd 36.1 bc 67.0 b 26.4 c
N3 46.1 ab 74.5 c 32.9 bc 40.7 ab 73.1 a 29.0 b
显著性(P值) Significance (P-value)
绿肥 Green manure (G) ** ** ** ** ** **
施氮Nitrogen application (N) ** ** ** ** ** **
绿肥×施氮G×N * ** ** ** NS NS

表4

小麦籽粒产量和氮素吸收及分配转运与氮素利用率的关联矩阵及排序"

项目
Item
氮素利用率
Nitrogen use
efficiency
排序
Ranking
籽粒产量 Grain yield 0.678 6
氮素积累量 Nitrogen accumulation 0.786 3
氮肥偏生产力 Nitrogen partial factor productivity 0.552 9
花前叶器官氮素向穗的转运量 Nitrogen transportation quantity from leaf to ear before flowering 0.604 8
花前茎器官氮素向穗的转运量 Nitrogen transportation quantity from stem to ear before flowering 0.609 7
穗氮素分配 Nitrogen distribution in ear 0.854 1
氮素最大吸收速率 Maximum uptake rate of nitrogen 0.733 5
氮素平均吸收速率 Mean uptake rate of nitrogen 0.810 2
氮素净同化速率 Net assimilation rate of nitrogen 0.745 4

图6

小麦籽粒产量和氮素吸收及分配转运与氮素利用率的主成分分析 NUE、NA、GY、NPFP、NDE、TQL、TQS、NVmean、NVmax和NNAR分别表示氮素利用率、氮素积累量、籽粒产量、氮肥偏生产力、穗氮素分配、花前叶器官氮素向穗的转运量、花前茎器官氮素向穗的转运量、氮素最大吸收速率、氮素平均吸收速率和氮素净同化速率。"

[1] Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller N D, Gerber J S. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett, 2016, 11: 095007.
[2] Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. J Integr Agric, 2024, 23: 122-140.
doi: 10.1016/j.jia.2023.05.006
[3] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[4] Duan J Z, Shao Y H, He L, Li X, Hou G, Li S N, Feng W, Zhu Y J, Wang Y H, Xie Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 134088.
[5] Mi X T, He G, Wang Z H. Comprehensive nitrogen management techniques for wheat self-sufficiency in China. Resour Conserv Recycl, 2022, 178: 106026.
[6] 张建军, 樊廷录, 赵刚, 党翼, 王磊, 李尚中. 长期定位施不同氮源有机肥替代部分含氮化肥对陇东旱塬冬小麦产量和水分利用效率的影响. 作物学报, 2017, 43: 1077-1086.
doi: 10.3724/SP.J.1006.2017.01077
Zhang J J, Fan T L, Zhao G, Dang Y, Wang L, Li S Z. Yield and water use efficiency of winter wheat in response to long-term application of organic fertilizer from different nitrogen resources replacing partial chemical nitrogen in dry land of eastern Gansu Province. Acta Agron Sin, 2017, 43: 1077-1086 (in Chinese with English abstract).
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929 (in Chinese with English abstract).
[8] 苟志文, 殷文, 柴强, 樊志龙, 胡发龙, 赵财, 于爱忠, 范虹. 干旱灌区小麦间作玉米麦后复种绿肥的可持续性分析. 中国农业科学, 2022, 55: 1319-1331.
doi: 10.3864/j.issn.0578-1752.2022.07.005
Gou Z W, Yin W, Chai Q, Fan Z L, Hu F L, Zhao C, Yu A Z, Fan H. Analysis of sustainability of multiple cropping green manure in wheat-maize intercropping after wheat harvested in arid irrigation areas. Sci Agric Sin, 2022, 55: 1319-1331 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.07.005
[9] Yu R, Zhang H Y, Chang F D, Song J S, Wang J, Wang X Q, Kan Z R, Zhao N, Li X H, Ma J, Li Y Y. Mixed sowing of Feed rape and Vicia villosa can substitute nitrogen fertilizer to improve soil multifunctionality in the Hetao irrigation District. CATENA, 2024, 235: 107617.
[10] The S V, Snyder R, Tegeder M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front Plant Sci, 2021, 11: 628366.
[11] Wei J G, Fan Z L, Hu F L, Mao S F, Yin F, Wang Q M, Chai Q, Yin W. Legume green manure can intensify the function of chemical nitrogen fertilizer substitution via increasing nitrogen supply and uptake of wheat. Crop J, 2024, 12: 1222-1232.
doi: 10.1016/j.cj.2024.07.004
[12] 常单娜, 王慧, 周国朋, 高嵩涓, 刘佳, 徐昌旭, 曹卫东. 赣北地区稻-稻-紫云英轮作体系减施化肥对水稻产量、氮素吸收及土壤供氮能力的影响. 植物营养与肥料学报, 2023, 29: 1449-1460.
Chang D N, Wang H, Zhou G P, Gao S J, Liu J, Xu C X, Cao W D. Yield and nitrogen uptake of rice and soil nitrogen supply capacity under fertilizer reduction in a rice-rice-Chinese milk vetch rotation system, northern Jiangxi province, China. J Plant Nutr Fert, 2023, 29: 1449-1460 (in Chinese with English abstract).
[13] 杨璐, 曾闹华, 白金顺, 周兴, 周国朋, 高嵩涓, 聂军, 曹卫东. 紫云英季土壤固氮微生物对外源碳氮投入的响应. 中国农业科学, 2020, 53: 105-116.
doi: 10.3864/j.issn.0578-1752.2020.01.010
Yang L, Zeng N H, Bai J S, Zhou X, Zhou G P, Gao S J, Nie J, Cao W D. Responses of soil diazotroph community to rice straw, glucose and nitrogen addition during Chinese milk vetch growth. Sci Agric Sin, 2020, 53: 105-116 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.01.010
[14] 李文广, 杨晓晓, 黄春国, 薛乃雯, 夏清, 刘小丽, 张晓琪, 杨思, 杨珍平, 高志强. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响. 中国农业科学, 2019, 52: 2664-2677.
doi: 10.3864/j.issn.0578-1752.2019.15.010
Li W G, Yang X X, Huang C G, Xue N W, Xia Q, Liu X L, Zhang X Q, Yang S, Yang Z P, Gao Z Q. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Sci Agric Sin, 2019, 52: 2664-2677 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.15.010
[15] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响. 作物学报, 2023, 49: 3131-3140.
doi: 10.3724/SP.J.1006.2023.31017
Chai J, Yu A Z, Li Y, Wang Y L, Wang F, Wang P F, Lyu H Q, Yang X H, Shang Y P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area. Acta Agron Sin, 2023, 49: 3131-3140 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.31017
[16] 殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28: 1990-2000.
Yin F, He X Q, Fan Z L, Hu F L, Fan H, Yin W, Chai Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. J Plant Nutr Fert, 2022, 28: 1990-2000 (in Chinese with English abstract).
[17] 麻碧娇, 苟志文, 殷文, 于爱忠, 樊志龙, 胡发龙, 赵财, 柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55: 3501-3515.
doi: 10.3864/j.issn.0578-1752.2022.18.003
Ma B J, Gou Z W, Yin W, Yu A Z, Fan Z L, Hu F L, Zhao C, Chai Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Sci Agric Sin, 2022, 55: 3501-3515 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.18.003
[18] 王永亮, 胥子航, 李申, 梁哲铭, 薛晓蓉, 白炬, 杨治平. 秸秆还田与花后灌溉提高春玉米产量及水氮利用效率. 中国农业科学, 2023, 56: 3599-3614.
doi: 10.3864/j.issn.0578-1752.2023.18.009
Wang Y L, Xu Z H, Li S, Liang Z M, Xue X R, Bai J, Yang Z P. Straw returning and post-silking irrigating improve the grain yield and utilization of water and nitrogen of spring maize. Sci Agric Sin, 2023, 56: 3599-3614 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.18.009
[19] 郭丽, 史建硕, 王丽英, 李若楠, 任燕利, 张彦才. 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响. 中国生态农业学报, 2018, 26: 668-676.
Guo L, Shi J S, Wang L Y, Li R N, Ren Y L, Zhang Y C. Effects of nitrogen application rate on nitrogen absorption and utilization in summer maize and soil NO3--N content under driP fertigation. Chin J Eco-Agric, 2018, 26: 668-676 (in Chinese with English abstract).
[20] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报, 2020, 28: 1210-1218.
Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210-1218 (in Chinese with English abstract).
[21] 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区小麦水分利用特征对绿肥与麦秸协同还田的响应. 中国农业科学, 2023, 56: 838-849.
doi: 10.3864/j.issn.0578-1752.2023.05.003
Fan Z L, Hu F L, Yin W, Fan H, Zhao C, Yu A Z, Chai Q. Response of water use characteristics of spring wheat to co- incorporation of green manure and wheat straw in arid irrigation region. Sci Agric Sin, 2023, 56: 838-849 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.05.003
[22] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49: 4096-4106.
doi: 10.3864/j.issn.0578-1752.2016.21.004
Zhou G P, Cao W D, Bai J S, Nie J, Xu C X, Zeng N H, Gao S J, Wang Y Q, Shimizu K. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Sci Agric Sin, 2016, 49: 4096-4106 (in Chinese with English abstract).
[23] Wang Z K, Wang C Y, Tan X Q, Lou H X, Wang X L, Shao D L, Ning N, Kuai J, Wang J, Xu Z H, Wang B, Zhou G S, Jiang D H, Zhao J. Developing diversified forage cropping systems for synergistically enhancing yield, economic benefits, and soil quality in the Yangtze River Basin. Agric Ecosyst Environ, 2024, 365: 108929.
[24] Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V. K. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Res, 2022, 218: 105318.
[25] 罗跃, 张久东, 周国朋, 常单娜, 高嵩涓, 包兴国, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28: 402-413.
Luo Y, Zhang J D, Zhou G P, Chang D N, Gao S J, Bao X G, Che Z X, Zhu Q, Cao W D. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi Oasis irrigated area. J Plant Nutr Fert, 2022, 28: 402-413 (in Chinese with English abstract).
[26] 吴多基, 姚冬辉, 范钊, 吴建富, 魏宗强. 长期绿肥和秸秆还田替代部分化肥提升红壤性水稻土酸解有机氮组分比例及供氮能力. 植物营养与肥料学报, 2022, 28: 227-236.
Wu D J, Yao D H, Fan Z, Wu J F, Wei Z Q. Long-term substitution of mineral fertilizer with green manure and straw increases hydrolysable organic nitrogen and N supply capacity in reddish paddy soils. J Plant Nutr Fert, 2022, 28: 227-236 (in Chinese with English abstract).
[27] 赵秋, 张新建, 宁晓光, 周丽平. 天津地区不同冬绿肥培肥土壤的效果. 植物营养与肥料学报, 2022, 28: 1228-1237.
Zhao Q, Zhang X J, Ning X G, Zhou L P. Effects of different winter green manure on soil fertility in Tianjin. J Plant Nutr Fert, 2022, 28: 1228-1237 (in Chinese with English abstract).
[28] 陈检锋, 梁海, 王伟, 陈华, 尹梅, 王志远, 刘俊, 陈军, 高嵩涓, 曹卫东, 付利波. 玉米-绿肥轮作体系下光叶紫花苕的氮肥替代和土壤肥力提升效应. 植物营养与肥料学报, 2021, 27: 1571-1580.
Chen J F, Liang H, Wang W, Chen H, Yin M, Wang Z Y, Liu J, Chen J, Gao S J, Cao W D, Fu L B. Effects of smooth vetch (Vicia villosa Roth var. glabrescens) incorporation on nitrogen fertilizer replacement and soil fertility improvement in a maize- green manure rotation system. J Plant Nutr Fert, 2021, 27: 1571-1580 (in Chinese with English abstract).
[29] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响. 作物学报, 2024, 50: 756-770.
doi: 10.3724/SP.J.1006.2024.32013
Wang L, Wu Y H, Qin Y H, Dan Y B, Chen H, Hao X S, Tian X H. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice. Acta Agron Sin, 2024, 50: 756-770 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32013
[30] Zhang D B, Yao P W, Zhao N, Yu C W, Cao W D, Gao Y J. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. Eur J Agron, 2016, 72: 47-55.
[31] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响. 作物学报, 2024, 50: 686-694.
doi: 10.3724/SP.J.1006.2024.33031
Shang Y P, Yu A Z, Wang Y L, Wang P F, Li Y, Chai J, Lyu H Q, Yang X H, Wang F. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area. Acta Agron Sin, 2024, 50: 686-694 (in Chinese with English abstract).
[32] Breza L C, Mooshammer M, Bowles T M, Jin V L, Schmer M R, Thompson B, Grandy A S. Complex crop rotations improve organic nitrogen cycling. Soil Biol Biochem, 2023, 177: 108911.
[33] Li M J, Wang T, Zhang H, Liu S, Li W H, Abou Elwafa S F, Tian H. TaNRT2.1-6B is a dual-affinity nitrate transporter contributing to nitrogen uptake in bread wheat under both nitrogen deficiency and sufficiency. Crop J, 2022, 10: 993-1005.
doi: 10.1016/j.cj.2021.11.012
[34] Yang X H, Nong B X, Chen C, Wang J R, Xia X Z, Zhang Z Q, Wei Y, Zeng Y, Feng R, Wu Y Y, Guo H, Yan H F, Liang Y T, Liang S H, Yan Y, Li D T, Deng G F. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice. Crop J, 2023, 11: 108-118.
[1] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[2] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[3] 徐泽, 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华. 密度与氮素对夏播棉氮素吸收利用的影响[J]. 作物学报, 2024, 50(6): 1584-1596.
[4] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[7] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[8] 毛守发, 韦金贵, 柴强, 樊志龙, 胡发龙, 殷文, 王琦明. 绿洲灌区绿肥还田对减量灌水小麦产量的补偿机制[J]. 作物学报, 2024, 50(11): 2818-2830.
[9] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[10] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[11] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[12] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[13] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[14] 赵彩霞, 沈吉成, 尹淑香, 叶发慧, 杨淼思, 刘瑞娟, 刘德梅, 张怀刚, 沈裕虎, 陈文杰. 波兰小麦在青藏高原饲用性能的评价[J]. 作物学报, 2023, 49(11): 3017-3028.
[15] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!