欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1124-1135.doi: 10.3724/SP.J.1006.2024.33044

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米多叶矮化突变体lyd1的鉴定与基因克隆

苏帅(), 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊*()   

  1. 四川农业大学玉米研究所 / 农业部西南玉米生物学与遗传育种重点实验室, 四川成都 611130
  • 收稿日期:2023-07-31 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-08
  • 通讯作者: 曹墨菊, E-mail: caomj@sicau.edu.cn
  • 作者简介:E-mail: 1018714902@qq.com
  • 基金资助:
    四川省科技计划项目(2021YFYZ0011);四川省科技计划项目(2021YFYZ0017);四川省科技计划项目(MZGC20230108);四川农业大学学科建设专项研究支持计划项目资助。

Identification and gene cloning of leafy dwarf mutant lyd1 in maize

SU Shuai(), LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju*()   

  1. Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
  • Received:2023-07-31 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-08
  • Contact: E-mail: caomj@sicau.edu.cn
  • Supported by:
    Sichuan Science and Technology Program(2021YFYZ0011);Sichuan Science and Technology Program(2021YFYZ0017);Sichuan Science and Technology Program(MZGC20230108);Specific Research Supporting Program for Discipline Construction at Sichuan Agricultural University.

摘要:

玉米株高降低通常是由节间数目减少、节间长度变短或二者共同作用所致。而本研究在基因编辑后代中发现的玉米多叶矮化突变体lyd1却表现为节间数目显著增加, 株高显著降低。lyd1株高仅为93.10 cm, 与野生型KN5585的株高159.95 cm相比, 降低了41.79%, 差异达到极显著水平。然而lyd1叶片数平均达到27.8片, 相较野生型平均17.8片叶, 增加56.18%, 差异达到极显著水平。遗传分析表明, lyd1的突变表型由1对隐性核基因控制, 通过图位克隆将控制多叶矮化性状的基因定位于玉米3号染色体标记Indel10和Indel11之间, 物理距离0.74 Mb。对定位区间内13个基因(不包含假基因)的序列进行测序, 发现仅ZmTE1在第4外显子出现1个A碱基的替换, 其他基因无差异。ZmTE1编码一个RNA结合蛋白, 氨基酸的替换发生在第3个RNA结合结构域内(RRM3), 导致天冬氨酸转变为缬氨酸。突变体lyd1的突变位点与已报道的te1-mum1te1-mum2te1-mum3zm66不同, lyd1的发现为进一步解析玉米叶片和节间发育平衡的遗传机制提供了宝贵的材料。

关键词: 玉米, 叶片数量, 节间长度, 基因定位

Abstract:

The decrease of plant height in maize is usually caused by the decrease in the number of internodes, the shortening of internodes or the combination of both. However, in this study, the mutant leafy dwarf1 (lyd1) found in the progeny of gene editing, exhibited more leaves and shorter stature. Quantitative measurements indicated the plant height of mutant lyd1 was only 93.10 cm, the plant height of wild-type KN5585 was 159.95 cm. The plant height was significantly reduced by 41.79% in mutant lyd1 compared with the wild type KN5585. The wild type KN5585 produced an average of 17.8 leaves at maturity stage, whereas mutants lyd1 produced 27.8 leaves. The number of leaves were significantly increased by 56.18% in mutant lyd1 compared with the wild type. Genetic analysis showed that the mutation phenotype of lyd1 was controlled by a pair of recessive nuclear genes. We applied a map-based cloning strategy to identify the gene responsible for the lyd1 phenotype. The gene was located between Indel10 and Indel11 on maize chromosome 3, and the physical distance was 0.74 Mb. Gene sequencing analysis of 13 genes (excluding pseudogenes) within the interval revealed that one base A was substituted in the fourth exon of ZmTE1, and there was no significant difference in other genes. ZmTE1 encoded an RNA-binding protein. The amino acid substitution was in the third RNA binding domain (RRM3), resulting in the conversion of aspartic acid to valine. The mutation sites of the mutant lyd1 were different from te1-mum1, te1-mum2, te1-mum3, and zm66 in previously reported. The discovery of lyd1 provides valuable materials for further analysis of the genetic mechanism of the balance between leaves and internodes development in maize.

Key words: maize, the number of leaves, the length of internodes, gene mapping

图1

野生型KN5585和突变体lyd1的性状比较 A、B、C: 分别表示五叶期、十叶期和成熟期的野生型KN5585和lyd1植株; D: 野生型KN5585和lyd1成熟期的叶片表型; E: 野生型KN5585和突变体lyd1的雄穗表型; F、G: 野生型KN5585和lyd1的果穗和籽粒的表型。标尺: A 15 cm; B、C、D 30 cm; E 5 cm; F 2 cm。"

图2

野生型KN5585和突变体lyd1的节间、叶片发育的比较 A: 野生型KN5585和lyd1地上部分节间长度的比较, 0表示雌穗所在节间、-1表示雌穗下方第一节、+1表示雌穗上方第一节, 依此类推; B: 野生型KN5585和lyd1叶片发育过程比较。纵坐标表示调查群体内植株叶片的平均数, 横坐标表示调查日期。"

表1

突变体lyd1和野生型KN5585的农艺性状数据分析"

农艺性状
Agronomic trait
野生型
KN5585
突变体
lyd1
相比KN5585
Compared with KN5585 (%)
株高 Plant height (cm) 159.95±6.37 93.10±6.78 -41.79**
穗位高 Ear height (cm) 64.37±5.50 43.48±2.96 -32.45**
完全叶数量 Number of the complete leaves 17.80±0.96 27.80±1.18 56.18**
雄穗分支数 Number of the tassel branches 12.07±1.38 9.59±1.53 -20.55**
叶长(穗位叶) Length of leaf (cm) 63.60±2.76 43.65±1.29 -31.37**
叶长(穗位叶下第一叶) Length of leaf (cm) 63.30±3.62 43.51±1.76 -31.26**
叶长(穗位叶下第二叶) Length of leaf (cm) 63.30±2.11 39.60±2.19 -37.44**
叶宽(穗位叶) Width of leaf (cm) 6.81±0.23 6.24±0.32 -8.37*
叶宽(穗位叶下第一叶) Width of leaf (cm) 7.72±0.20 6.58±0.57 -14.77**
叶宽(穗位叶下第二叶) Width of leaf (cm) 8.17±0.25 6.89±0.33 -15.67**
穗长 Ear length (mm) 137.5±3.94 75.93±4.54 -44.78**
穗粗 Ear width (mm) 41.66±1.51 35.61±1.35 -14.52**
穗行数 Ear rows 14.53±0.88 14.70±1.24 1.17
行粒数 Kernels per row 28.47±2.31 14.40±2.73 -49.42**
穗粒重 Grain weight per ear (g) 88.75±3.83 27.78±3.09 -68.70**
百粒重 100-kernel weight (g) 23.56±1.31 16.80±2.35 -25.70**
播种至群体内50%植株散粉的天数
Time to sow until 50% of the plant is powdered (d)
89.03±2.10
88.64±1.79
0.44

图3

野生型KN5585和突变体lyd1散粉后雌穗穗位下第二节节间的石蜡切片观察 A: 散粉后野生型KN5585最长节间(第11叶所在节间)细胞观察; B: 散粉后突变体lyd1最长节间(第19叶所在节间)细胞观察; C, D: 野生型KN5585最长节间和lyd1最长节间细胞长度和数量的比较。标尺: 5 μm; **表示 P < 0.01差异极显著。"

表2

基因定位相关标记信息"

引物
Primer name
正向引物物理位置
Physical location of the forward sequences in Chr.3
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
Bnlg1019 26,363,937 ACCATAGTTGGACGGACCAC ACCACAACACAGACGAGCAC
Indel1 119,614,380 GTCTCCTCAGGCTCAGCG TCCAGTGGTGGTGTAGCAGA
Indel2 151,632,100 CGCATTTGAACACAGACAATG TTGTTTGTCAGATTGGACCG
Indel3 153,748,760 CGCATTTGAACACAGACAATG TTGTTTGTCAGATTGGACCG
Indel4 158,344,977 AATTCTTGCAGAAGTAGAGAGCC ACTTCATCACCACCTCCACC
Indel5 159,813,116 CTTTTGCCTCTGGCGTTTG GCAGTCAATGGGGATGGA
Indel6 160,577,046 ATTGGGAGGCACAGCCTAAC CTGAGCCTCTGTACCTTGGG
Indel7 164,148,097 CCCTCCACATCATCACCAGT GATGATCCGACGCTGTCTTT
Inde18 175,087,860 TGAACGAACGATTAACGATGA GAGGATTTCGTCTTGGTTCG
Indel9 176,089,140 GACATGTCCGTCGGTTCC CACGTACATGGTTCGCATTC
Indel10 169,660,810 GAACGCGACACGGAGGTC TGACTGACACATGCTTGCAC
Indel11 170,400,425 CGGCCGAATAATTAGAGTTCC GAGCATCTTTTTGGACCAGC
Indel12 170,529,987 TCTGAGCACCAGATCAAATCA GCACTCGAGGGAATGAAATC
Indel13 171,483,961 CACTGGCAGCAGCAGACTAA AAATATTCCGAGAACGAGCG
SNP1 169,869,794 GCTAGTAACGCCATAGCCCA TCTCGCCTGGTTCTTGATCG

图4

突变体lyd1的精细定位 A: 候选基因初步定位在3号染色体Indel7和Indel8分子标记之间; B: 候选基因精细定位在3号染色体Indel10和Indel11分子标记之间; C: 精细定位区间内包含14个候选基因。横线上方为分子标记, 横线下方为重组单株数。"

表3

定位区间内候选基因功能注释"

基因ID
B73_V5_gene ID
功能注释
Function annotation
位置
Location
Zm00001eb144240 Ald1-aldolase 170,387,546-170,390,313
Zm00001eb144160 Ccp33-cysteine protease 170,125,038-170,126,144
Zm00001eb144140 RNA blind protein 169,867,979-169,872,110
Zm00001eb144180 JmjC domain—containing histone demethylase 170,134,182-170,134,702
Zm00001eb144170 JmjC domain—containing histone demethylase 170,128,075-170,133,903
Zm00001eb144220 Protein_coding 170,296,791-170,307,581
Zm00001eb144250 Protein_coding 170,390,315-170,392,581
Zm00001eb144260 Protein_coding 170,393,357-170,396,464
Zm00001eb144210 Protein_coding 170,142,920-170,157,964
Zm00001eb144200 Non_coding 170,140,528-170,140,860
Zm00001eb144190 Non_coding 170,140,015-170,140,550
Zm00001eb144150 Non_coding 170,124,627-170,126,302
Zm00001eb144230 Non_coding 170,332,480-170,333,214
Zm00001eb144130 Pseudogene 169,694,106-169,706,660

图5

lyd1突变位点及突变位点保守性分析 A: 突变体lyd1与野生型KN5585 ZmTE1的CDS差异序列比较; B, C: ZmTE1蛋白序列突变氨基酸残基保守性分析"

图6

野生型KN5585和突变体lyd1的序列差异位点群体验证"

图7

ZmTE1组织表达分析 A: ZmTE1在野生型KN5585不同组织中的表达; B: ZmTE1在野生型KN5585和突变体lyd1中的表达比较。V3、V7、V11、V17分别表示玉米植株分别有3、7、11、17片完全展开叶所处的时期。"

图8

ZmTE1的亚细胞定位 PC2300-eGFP-ZmTE1与NLS (细胞核标记)和mCherry (细胞膜标记)共定位, 标尺为50 μm。"

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Haarhoff S J, Swanepoel P A. Plant population and maize grain yield: a global systematic review of rainfed trials. Crop Sci, 2018, 5: 1819-1829.
[3] Bensen R J, Johal G S. Cloning and characterization of the maize AN1 gene. Plant Cell, 1995, 7: 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880
[4] Chen Y, Hou M M, Liu L J, Wu S, Shen Y, Ishiyama K, Kobaya, Shi M, McCarty D R, Tan B C. The maize Dwarf1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[5] Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405-416.
doi: 10.1111/tpj.2013.73.issue-3
[6] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307-1317.
doi: 10.1105/tpc.7.8.1307 pmid: 7549486
[7] Cassani E, Bertolini E, Cerino Badone F, Landoni M, Gavina D, Sirizzotti A, Pilu R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the Dwarf8 gene. Mol Breed, 2009, 24: 375-385.
doi: 10.1007/s11032-009-9298-3
[8] Harberd N P, Freeling M. Genetics of dominant gibberellin- insensitive dwarfism in maize. Genetics, 1989, 121: 827-838.
doi: 10.1093/genetics/121.4.827 pmid: 17246493
[9] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T. Maize DELLA proteins Dwarf plant8 and Dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010, 51: 1854-1868.
doi: 10.1093/pcp/pcq153
[10] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2and sorghum Dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[11] Zhang X, Hou X, Liu Y, Zheng L, Yi Q, Zhang H, Huang X, Zhang J, Hu Y, Yu G, Liu H, Li Y, Huang H, Zhan F, Chen L, Tang J, Huang Y. Maize brachytic2 (Br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region. BMC Plant Biol, 2019, 19: 589.
doi: 10.1186/s12870-019-2200-5 pmid: 31881837
[12] Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P V, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011, 108: 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[13] Best N B, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B P. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gened Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol, 2016, 171: 2633-2647.
doi: 10.1104/pp.16.00399
[14] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7: e30798.
[15] Kir G, Ye H, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A, Inzé D, Sylvester A W, Yin Y, Becraft P W. RNA interference knock down of BRI1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826-839.
doi: 10.1104/pp.15.00367
[16] Li H, Wang L, Liu M, Dong Z, Li Q, Fei S, Xiang H, Liu B, Jin W. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol, 2020, 183: 1184-1199.
doi: 10.1104/pp.19.01421
[17] Schaller G E, Bishopp A, Kieber J J. The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell, 2015, 27: 44-63.
doi: 10.1105/tpc.114.133595
[18] Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, Mcsteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011, 23: 550-566.
doi: 10.1105/tpc.110.075267
[19] Lee B H, Johnston R, Yang Y, Gallavotti A, Kojima M, Travençolo B A, Costa Lda F, Sakakibara H, Jackson D. Studies of Aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol, 2009, 150: 205-216.
[20] 张在宝, 李婉杰, 李九丽, 张弛, 胡梦辉, 程琳, 袁红雨. 植物RNA结合蛋白研究进展. 中国农业科学, 2018, 51: 4007-4019.
doi: 10.3864/j.issn.0578-1752.2018.21.001
Zhang Z B, Li W J, Li J L, Zhang C, Hu M H, Cheng L, Yuan H Y. The research progress of plant RNA binding proteins. Sci Agric Sin, 2018, 51: 4007-4019 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.21.001
[21] Cho H, Cho H S, Hwang I. Emerging roles of RNA-binding proteins in plant development. Curr Opin Plant Biol, 2019, 51: 51-57.
doi: S1369-5266(19)30026-3 pmid: 31071564
[22] Jeffares D C, Phillips M J, Moore S, Veit B. A description of the Mei2-like protein family; structure, phylogenetic distribution and biological context. Dev Genes Evol, 2004, 214: 149-158.
pmid: 14986133
[23] Kawakatsu T, Itoh J, Miyoshi K, Kurata N, Alvarez N, Veit B, Nagato Y. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell, 2006, 18: 612-625.
pmid: 16461585
[24] Anderson G H, Alvarez N D, Gilman C, Jeffares D C, Trainor V C, Hanson M R, Veit B. Diversification of genes encoding mei2-like RNA binding proteins in plants. Plant Mol Biol, 2004, 54: 653-670.
pmid: 15356386
[25] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L, Fang H Y. Plant Gene Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744 (in Chinese).
[26] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[27] Avila L M, Cerrudo D, Swanton C, Lukens L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. J Exp Bot, 2016, 67: 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748
[28] Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Lunde C, Hake S, Zhang Z. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell, 2018, 30: 360-374.
doi: 10.1105/tpc.17.00791
[29] Li W, Ge F, Qiang Z, Zhu L, Zhang S, Chen L, Wang X, Li J, Fu Y. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height. Plant Biotechnol J, 2020, 18: 1345-1347.
doi: 10.1111/pbi.v18.6
[30] Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol, 2001, 127: 33-45.
doi: 10.1104/pp.127.1.33 pmid: 11553732
[31] Lyu H K, Zheng J, Wang T Y, Fu J J, Huai J L, Min H W, Zhang X, Tian B H, Shi Y S, Wang G Y. The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014, 84: 243-257.
doi: 10.1007/s11103-013-0129-x
[32] Bommert P, Je B I, Goldshmidt A, Jackson D. The maize Gα gene Compact plant2 functions in clavata signalling to control shoot meristem size. Nature, 2013, 502: 555-558.
doi: 10.1038/nature12583
[33] Veit B, Briggs S P. Regulation of leaf initiation by the terminal ear1 gene of maize. Nature, 1998, 393: 166-168.
doi: 10.1038/30239
[34] Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan B C, Li C, Ding Z. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol J, 2022, 20: 526-537.
doi: 10.1111/pbi.v20.3
[35] Hentze M W, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol, 2018, 19: 327-341.
doi: 10.1038/nrm.2017.130
[36] 唐蜻. 植物RNA结合蛋白的研究进展. 安徽农业科学, 2010, 38(1): 38-41.
Tang Q. The research progress of plant RNA binding proteins. J Anhui Agric Sci, 2010, 38(1): 38-41 (in Chinese with English abstract).
[1] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[2] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[3] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[4] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[5] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[6] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[7] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[8] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[9] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[10] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[11] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[12] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[13] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[14] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[15] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .