欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1787-1804.doi: 10.3724/SP.J.1006.2024.32056

• 耕作栽培·生理生化 • 上一篇    下一篇

干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响

付景1(), 马梦娟1, 张骐飞1, 段居琦2, 王越涛1, 王付华1, 王生轩1, 白涛1, 尹海庆1,*(), 王亚1,*()   

  1. 1河南省农业科学院粮食作物研究所, 河南郑州 450002
    2中国气象局国家气候中心, 北京 100081
  • 收稿日期:2023-12-18 接受日期:2024-04-01 出版日期:2024-07-12 网络出版日期:2024-04-17
  • 通讯作者: *尹海庆, E-mail: yinhq98@163.com;王亚, E-mail: wangya840212@163.com
  • 作者简介:E-mail: fujing8210@sina.cn
  • 基金资助:
    河南省重点研发与推广专项(科技攻关)(222102110019);河南省重点研发专项(231111110500);河南省农业科学院自主创新项目(2023ZC015);河南省现代农业产业技术体系建设专项(HARS-22-03-S);河南省农业科学院水稻科技创新团队项目(2023TD29);河南省农业科学院基础性科研工作项目(2023JC05)

Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice

FU Jing1(), MA Meng-Juan1, ZHANG Qi-Fei1, DUAN Ju-Qi2, WANG Yue-Tao1, WANG Fu-Hua1, WANG Sheng-Xuan1, BAI Tao1, YIN Hai-Qing1,*(), WANG Ya1,*()   

  1. 1Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2National Climate Center, China Meteorology Administration, Beijing 100081, China
  • Received:2023-12-18 Accepted:2024-04-01 Published:2024-07-12 Published online:2024-04-17
  • Contact: *E-mail: yinhq98@163.com; E-mail: wangya840212@163.com
  • Supported by:
    Henan Provincial Science and Technology Research Program(222102110019);Special Program for Key Research and Development of Henan Province(231111110500);Henan Academy of Agricultural Sciences Independent Innovation Project(2023ZC015);Special Fund for Henan Agriculture Research System(HARS-22-03-S);Henan Academy of Agricultural Sciences Rice Science and Technology Innovation Team Project(2023TD29);Fundamental Research Project of Henan Academy of Agricultural Sciences(2023JC05)

摘要:

水分和氮素对水稻叶片光合特性和氮素吸收利用有重要影响, 但在干湿交替灌溉条件下, 水、氮是如何影响水稻叶片和根系氮代谢酶活性、产量和氮素吸收利用的仍不清楚。探明这一问题对于协同提高产量和氮肥利用效率有重要意义。本研究以超级稻品种南粳9108为材料, 大田种植, 设置全生育期常规灌溉(conventional irrigation, CI)和干湿交替灌溉(alternate wetting and drying irrigation, AWD) 2种灌溉方式及5个施氮水平, 不施氮(N0)、施氮90 kg hm-2 (N1)、施氮180 kg hm-2 (N2)、施氮270 kg hm-2 (N3)和施氮360 kg hm-2 (N4)。结果表明, 与CI相比, AWD增加了水稻主要生育时期叶片的叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量, 提高了叶片净光合速率, 并显著增加了叶片中超氧化物歧化酶、过氧化氢酶、硝酸还原酶、谷氨酰胺合成酶和谷氨酸合成酶活性, 显著降低了过氧化物酶、内肽酶活性和丙二醛含量, 显著提高了根系中氮代谢酶硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶和谷氨酸脱氢酶活性; AWD的产量较CI平均增加了10.4%。AWD显著提高了氮素转运量、氮素转运率、氮肥吸收利用率和氮肥偏生产力, 产量和氮肥利用率均以AWD+N3处理组合的最高。因此, 轻度干湿交替灌溉配合一定的施氮量, 可以充分发挥水、肥效应, 促进根系和叶片的氮代谢水平, 提高叶片光合特性, 协调地下地上部生长, 有利于水稻产量和氮肥利用率的协同提高。

关键词: 水稻, 干湿交替灌溉, 施氮量, 光合特性, 氮代谢酶, 氮素吸收利用

Abstract:

Soil water potential and nitrogen nutrients are the important factors affecting photosynthetic characteristics in leaves and nitrogen absorption and utilization of rice (Oryza sativa L.). Little is known, however, how synergistic the two factors under alternative wetting and drying irrigation (AWD) can be in terms of nitrogen metabolism enzyme activity, grain yield, and nitrogen use efficiencies. A field experiment was conducted using a super rice variety of Nanjing 9108 with five nitrogen levels, namely, no nitrogen applied (N0), 90 (N1), 180 (N2), 270 (N3), and 360 kg hm-2 (N4), and two irrigation regimes, namely, conventional irrigation (CI) and AWD over two years. Our results revealed significant interaction between irrigation and nitrogen levels. At the same nitrogen levels, the content of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid, net photosynthetic rate, the activities of superoxide dismutase, catalase, nitrate reductase, glutamine synthetase, and glutamic acid synthetase at main growth stages were higher in AWD than those in CI. Furthermore, the activities of nitrate reductase, glutamine synthetase, glutamic acid synthetase, and glutamate dehydrogenase in roots of rice were also increased, but the activities of peroxidase, endopeptidase, and the content of malondialdehyde in leaves were lower. AWD treatment increased grain yield by an average of 10.4% compared with CI, and also enhanced nitrogen transport capacity, nitrogen transport efficiency, nitrogen absorption, utilization efficiency, and partial productivity of nitrogen fertilizer. AWD coupled with N3 had the highest yield and nitrogen use efficiency; this treatment was the optimal water-nitrogen interaction management model in this study. These results suggest that adopting AWD with an appropriate nitrogen rate promotes nitrogen metabolism in roots and leaves and improves photosynthetic characteristics of leaves, thereby synergistically increasing grain yield and nitrogen use efficiency in rice.

Key words: rice, alternate wetting and drying irrigation, nitrogen rate, photosynthetic characteristics, nitrogen metabolism enzyme, nitrogen absorption and utilization

表1

水稻生长期平均气温、日照时数和降雨量的变化"

年份
Year
气象条件
Meteorological condition
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
2018 平均气温 Temperature (℃) 21.81 26.86 28.44 27.61 20.99 15.46
日照时数 Sunshine (h) 202.1 226.8 195.5 251.7 191.1 210.5
降雨量 Precipitation (mm) 93.2 96.8 66.1 111.0 97.7 0
2019 平均气温 Temperature (℃) 21.63 27.91 28.74 26.04 21.63 16.10
日照时数 Sunshine (h) 242.0 200.8 208.9 179.2 187.1 143.5
降雨量 Precipitation (mm) 1.0 67.0 21.8 105.8 53.4 71.2

表2

灌溉方式和施氮量对水稻产量及其构成因素的影响"

年份
Year
处理
Treatment
穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total number of spikelets
(×106 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2018 CI+N0 228.1 h 113.7 h 259.3 i 89.5 a 25.8 a 5.99 h
CI+N1 263.3 f 127.9 f 336.8 g 84.1 b 25.6 a 7.25 f
CI+N2 286.5 d 139.1 e 398.5 e 81.8 c 25.1 b 8.18 e
CI+N3 324.7 b 148.5 c 482.2 c 78.1 d 24.9 b 9.38 b
CI+N4 323.8 b 156.8 b 507.7 b 68.9 f 24.1 c 8.43 d
AWD+N0 237.3 g 121.2 g 287.6 h 90.8 a 25.8 a 6.74 g
AWD+N1 272.7 e 136.3 e 371.7 f 85.2 b 25.7 a 8.14 e
AWD+N2 295.7 c 144.7 d 427.9 d 81.6 c 25.5 ab 8.90 c
AWD+N3 331.7 a 155.6 b 516.1 b 78.7 d 25.2 b 10.24 a
AWD+N4 330.3 a 163.1 a 538.7 a 71.2 e 24.3 c 9.32 b
2019 CI+N0 226.9 h 113.5 h 257.5 i 88.7 a 25.9 a 5.92 h
CI+N1 262.7 f 126.1 f 331.3 g 83.7 b 25.6 a 7.10 f
CI+N2 284.6 d 137.8 e 392.2 e 80.7 c 25.0 b 7.91 e
CI+N3 324.5 b 148.2 c 480.9 c 76.9 d 24.8 b 9.17 b
CI+N4 323.4 b 155.9 b 504.2 b 68.1 f 24.2 c 8.31 d
AWD+N0 234.8 g 120.7 g 283.4 h 89.8 a 25.9 a 6.59 g
AWD+N1 270.2 e 134.2 e 362.6 f 84.6 b 25.5 ab 7.82 e
AWD+N2 295.8 c 143.8 d 425.4 d 80.9 c 25.3 b 8.71 c
AWD+N3 332.9 a 154.6 b 514.7 b 77.4 d 25.1 b 10.00 a
AWD+N4 329.1 a 162.7 a 535.4 a 70.8 e 24.4 c 9.25 b
方差分析 ANOVA
年份 Year (Y) ns ns ns ns ns ns
灌溉 Irrigation (I) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
年份×灌溉 Y × I ns ns ns ns ns ns
年份×施氮量 Y × N ns ns ns ns ns ns
灌溉×施氮量 I × N * * * ns ns *
年份×灌溉×施氮量 Y × I × N ns ns ns ns ns ns

图1

灌溉方式和施氮量对水稻主要生育时期叶片光合色素的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

图2

灌溉方式和施氮量对水稻主要生育期叶片净光合速率的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

图3

灌溉方式和施氮量对水稻主要生育期叶片脂膜过氧化及抗氧化酶活性的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

图4

灌溉方式和施氮量对水稻主要生育期叶片氮代谢酶活性的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

图5

灌溉方式和施氮量对水稻主要生育期根系氮代谢酶活性的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

图6

灌溉方式和施氮量对水稻主要生育期氮素积累量的影响 CI: 常规灌溉; AWD: 干湿交替灌溉; N0: 不施氮肥; N1: 90 kg hm-2; N2: 180 kg hm-2; N3: 270 kg hm-2; N4: 360 kg hm-2。MT: 分蘖中期; PI: 穗分化始期; HD: 抽穗开花期; MA: 成熟期。不同字母表示处理间在0.05概率水平差异显著。"

表3

灌溉方式和施氮量对水稻茎-鞘叶中氮素转运量和转运率的影响"

年份
Year
处理
Treatment
抽穗期积累量
Accumulation at heading stage (kg hm-2)
成熟期积累量
Accumulation at maturity stage (kg hm-2)
氮素转运量
N translocation amount
(kg hm-2)
氮素转运率
N translocation
efficiency (%)
2018 CI+N0 55.7 f 32.6 i 23.1 h 41.5 g
CI+N1 95.6 e 48.7 g 46.9 f 49.1 e
CI+N2 128.7 d 61.5 e 67.2 d 52.2 d
CI+N3 160.7 c 72.6 c 88.1 b 54.8 c
CI+N4 168.6 ab 79.7 a 88.9 b 52.7 d
AWD+N0 54.8 f 28.6 j 26.2 g 47.8 f
AWD+N1 94.7 e 44.3 h 50.4 e 53.2 d
AWD+N2 130.5 d 57.4 f 73.1 c 56.0 b
AWD+N3 164.2 b 66.8 d 97.4 a 59.3 a
AWD+N4 172.8 a 75.7 b 97.1 a 56.2 b
2019 CI+N0 54.3 f 31.7 i 22.6 h 41.6 g
CI+N1 94.8 e 49.3 g 45.5 f 48.0 f
CI+N2 128.4 d 62.1 e 66.3 d 51.6 e
CI+N3 159.8 c 71.5 c 88.3 b 55.3 c
CI+N4 170.7 a 80.9 a 89.8 b 52.6 e
AWD+N0 55.3 f 29.2 i 26.1 g 47.2 f
AWD+N1 95.1 e 43.8 h 51.3 e 53.9 d
AWD+N2 131.8 d 59.1 f 72.7 c 55.2 c
AWD+N3 163.7 b 67.5 d 96.2 a 58.8 a
AWD+N4 171.6 a 74.9 b 96.7 a 56.4 b
方差分析 ANOVA
年份 Year (Y) ns ns ns ns
灌溉 Irrigation (I) ** ** ** **
施氮量N rate (N) ** ** ** **
年份×灌溉 Y × I ns ns ns ns
年份×施氮量 Y × N ns ns ns ns
灌溉×施氮量 I × N ns * ** *
年份×灌溉×施氮量 Y × I × N ns ns ns ns

表4

灌溉方式和施氮量对水稻氮肥利用效率的影响"

年份
Year
处理
Treatment
氮肥吸收利用率
Recovery
efficiency of
applied N
(%)
氮肥生理利用率
Physiological
efficiency of
applied N
(kg kg-1)
氮素籽粒生产效率
N use efficiency
for grain
production
(kg kg-1)
氮肥农学利用率
Agronomic
efficiency of
applied N
(kg kg-1)
氮肥偏生产力
Partial factor
production of
applied N
(kg kg-1)
2018 CI+N0 57.3 b
CI+N1 46.8 c 30.0 a 49.4 d 14.0 b 80.6 b
CI+N2 44.2 d 27.6 b 44.4 ef 12.2 d 45.5 d
CI+N3 43.3 d 29.0 a 42.3 g 12.5 cd 34.7 f
CI+N4 34.4 f 19.7 d 36.9 h 6.8 e 23.4 h
AWD+N0 63.6 a
AWD+N1 52.9 a 29.4 a 53.0 c 15.6 a 90.4 a
AWD+N2 50.5 b 23.8 c 45.2 e 12.0 d 49.5 c
AWD+N3 47.7 c 27.2 b 43.6 f 13.0 c 37.9 e
AWD+N4 40.5 e 17.7 e 37.0 h 7.2 e 25.9 g
2019 CI+N0 56.8 b
CI+N1 45.6 c 30.8 a 48.9 d 13.1 b 78.9 b
CI+N2 43.1 d 25.8 d 43.5 ef 11.1 e 44.0 d
CI+N3 43.0 d 28.0 b 41.6 g 12.1 cd 34.0 f
CI+N4 34.2 f 19.4 f 36.5 h 6.6 g 23.1 h
AWD+N0 62.0 a
AWD+N1 50.9 a 26.9 c 51.4 c 13.7 a 86.9 a
AWD+N2 49.3 b 23.8 e 44.6 e 11.7 d 48.4 c
AWD+N3 46.9 c 26.9 c 42.9 f 12.6 c 37.0 e
AWD+N4 39.8 e 18.6 f 37.0 h 7.4 f 25.7 g
方差分析 ANOVA
年份 Year (Y) ns ns ns ns ns
灌溉 Irrigation (I) ** ** ** ** **
施氮量N rate (N) ** ** ** ** **
年份×灌溉 Y × I ns ns ns ns ns
年份×施氮量 Y × N ns ns ns ns ns
灌溉×施氮量 I × N * ns ns * *
年份×灌溉×施氮量 Y × I × N ns ns ns ns ns
[1] 张耗. 水稻根系形态生理与产量形成的关系及其栽培调控技术. 扬州大学博士学位论文, 江苏扬州, 2011.
Zhang H. Morphology and Physiology of Rice Roots in Relation to Yield Formation and Cultivation Regulation Techniques. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2011 (in Chinese with English abstract).
[2] 姚锋先. 不同水氮管理对水稻生长和水氮效率影响的生理机制研究. 华中农业大学博士学位论文, 湖北武汉, 2011.
Yao F X. Studies on Physiological Mechanism of Rice Growth and Water and Nitrogen Use Efficiency under Different Water and Nitrogen Regimes. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[3] Pan J F, Liu Y Z, Zhong X H, Lampayan R M, Singleton G R, Huang N R, Liang K M, Peng B L, Tian K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric Water Manag, 2017, 184: 191-200.
[4] 杨建昌, 张建华. 水稻高产节水灌溉. 北京: 科学出版社, 2019. pp 1-11.
Yang J C, Zhang J H. High-Yielding Water-Saving Irrigation in Rice. Beijing: Science Press, 2019. pp 1-11 (in Chinese).
[5] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag, 2018, 203: 385-394.
[6] Xu G W, Song K J, Lu D K, Wang H Z, Chen M C. Influence of water management and nitrogen application on rice root and shoot traits. Agron J, 2019, 111: 2232-2244.
[7] Djaman K, Mel V C, Diop L, Sow A, EI-Namaky R, Manneh B, Saito K, Futakuchi K, Irmak S. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water, 2018, 10: 711-711.
[8] Ding L, Gao C M, Li Y R, Li Y, Zhu Y Y, Xu G H, Shen Q R, Kaldenhoff R, Kai L, Guo S W. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci, 2015, 234: 14-21.
doi: 10.1016/j.plantsci.2015.01.016 pmid: 25804805
[9] Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci, 2019, 59: 1261-1272.
[10] 张荣萍, 马均, 王贺正, 李艳, 李旭毅, 汪仁全. 不同灌水方式对水稻结实期一些生理性状和产量的影响. 作物学报, 2008, 34: 486-495.
doi: 10.3724/SP.J.1006.2008.00486
Zhang R P, Ma J, Wang H Z, Li Y, Li X Y, Wang R Q. Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling. Acta Agron Sin, 2008, 34: 486-495 (in Chinese with English abstract).
[11] 丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响. 作物学报, 2004, 30: 762-767.
Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin, 2004, 30: 762-767 (in Chinese with English abstract).
[12] 陈新红, 刘凯, 徐国伟, 王志琴, 杨建昌. 结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响. 上海交通大学学报(农业科学版), 2004, 22(1): 48-53.
Chen X H, Liu K, Xu G W, Wang Z Q, Yang J C. Effects of nitrogen and soil moisture on photosynthetic characters of flag leaf, yield and quality during grain filing in rice. J Shanghai Jiaotong Univ (Agric Sci Edn), 2004, 22(1): 48-53 (in Chinese with English abstract).
[13] 曾建敏, 崔克辉, 黄见良, 贺帆, 彭少兵. 水稻生理生化特性对氮肥的反应及氮利用效率的关系. 作物学报, 2007, 33: 1168-1176.
Zeng J M, Cui K H, Huang J L, He F, Peng S B. Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin, 2007, 33: 1168-1176 (in Chinese with English abstract).
[14] 徐国伟, 江孟孟, 陆大克, 赵喜辉, 陈明灿. 干湿交替灌溉与氮肥形态耦合对水稻光合特性及氮素利用的影响. 植物营养与肥料学报, 2020, 26: 1239-1250.
Xu G W, Jiang M M, Lu D K, Zhao X H, Chen M C. Optimum combination of irrigation and nitrogen supply form achieving high photosynthetic and nitrogen utilization efficiency. J Plant Nutr Fert, 2020, 26: 1239-1250 (in Chinese with English abstract).
[15] Wang Z Q, Zhang W Y, Beeboutb S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
[16] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382.
[17] Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 2003, 31: 491-543.
[18] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992. pp 140-142, 197-198.
Zhang X Z. Research Methods of Crop Physiology. Beijing: Agriculture Press, 1992. pp 140-142, 197-198 (in Chinese).
[19] 赵世杰, 徐长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210.
Zhao S J, Xu C C, Zou Q, Meng Q W. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30(3): 207-210 (in Chinese).
[20] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. p 124.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006. p 124 (in Chinese).
[21] 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802-807.
Wang X C, Xiong S P, Ma X M, Zhang J J, Wang Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecol Sin, 2005, 25: 802-807 (in Chinese with English abstract).
[22] Zhang C F, Peng S B, Benneti J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development. J Plant Physiol, 2000, 156: 230-233.
[23] 高玲, 叶茂炳, 张荣铣, 徐朗莱. 小麦旗叶老化期间的内肽酶. 植物生理学报, 1998, 24: 183-188.
Gao L, Ye M B, Zhang R X, Xu L L. Endopeptidases in wheat flagleaves during aging. Plant Physiol J, 1998, 24: 183-188 (in Chinese with English abstract).
[24] Loulakakis K A, Roubelakis K A. Intracelluar localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of major leaf isoenzyme. J Exp Bot, 1990, 41: 1223-1230.
[25] 剧成欣, 陶进, 钱希旸, 顾骏飞, 张耗, 赵步洪, 刘立军, 王志琴, 杨建昌. 不同年代中籼水稻品种的叶片光合性状. 作物学报, 2016, 42: 415-426.
doi: 10.3724/SP.J.1006.2016.00415
Ju C X, Tao J, Qian X Y, Gu J F, Zhang H, Zhao B H, Liu L J, Wang Z Q, Yang J C. Leaf photosynthetic characteristics of mid-season indica rice varieties applied at different decades. Acta Agron Sin, 2016, 42: 415-426 (in Chinese with English abstract).
[26] Martin M A, Guillermo B F, Juan A M S, Gustavo A S. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res, 2009, 110: 91-97.
[27] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23: 1225-1237.
Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. J Plant Nutr Fert, 2017, 23: 1225-1237 (in Chinese with English abstract).
[28] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478-485.
doi: 10.3724/SP.J.1006.2013.00478
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478-485 (in Chinese with English abstract).
[29] 王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34: 803-808.
doi: 10.3724/SP.J.1006.2008.00803
Wang D Y, Han B, Zhang X F, Shao G S, Xu C M, Fu G F. Influence of rhizosphere oxygen concentration on rice root growth. Acta Agron Sin, 2008, 34: 803-808 (in Chinese with English abstract).
[30] Zhang H, Yu C, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res, 2018, 215: 1-11.
[31] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[32] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511 (in Chinese with English abstract).
[33] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
[34] Han M, Okamoto M, Beatty P H, Rothstein S J, Good A G. The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet, 2015, 49: 269-289.
doi: 10.1146/annurev-genet-112414-055037 pmid: 26421509
[35] Sun Y J, Ma J, Sun Y Y, Hui X, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res, 2012, 127: 85-98.
[36] 谷岩, 胡文河, 徐百军, 王思远, 吴春胜. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响. 生态学报, 2013, 33: 7399-7407.
Gu Yan, Hu W H, Xu B J, Wang S Y, Wu C S. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation. Acta Ecol Sin, 2013, 33: 7399-7407 (in Chinese with English abstract).
[37] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141 (in Chinese with English abstract).
[38] 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7): 137-146.
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization. Trans CSAE, 2018, 34(7): 137-146 (in Chinese with English abstract).
[39] 褚光. 不同水分、养分利用效率水稻品种的根系特征及其调控技术. 扬州大学博士学位论文, 江苏扬州, 2016.
Chu G. Roots Traits for Rice Varieties with Different Water and Nitrogen Use Efficiencies and Their Regulation Techniques. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2016 (in Chinese with English abstract).
[40] 李晓峰, 程金秋, 梁健, 陈梦云, 任红茹, 张洪程, 霍中洋, 戴其根, 许轲, 魏海燕, 郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响. 作物学报, 2017, 43: 912-924.
doi: 10.3724/SP.J.1006.2017.00912
Li X F, Cheng J Q, Liang J, Chen M Y, Ren H R, Zhang H C, Huo Z Y, Dai Q G, Xu K, Wei H Y, Guo B W. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted japonica rice. Acta Agron Sin, 2017, 43: 912-924 (in Chinese with English abstract).
[41] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016, 49: 305-318.
doi: 10.3864/j.issn.0578-1752.2016.02.011
He H B, Yang R, Liao J, Wu L Q, Kong L C, Huang Y D. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region. Sci Agric Sin, 2016, 49: 305-318 (in Chinese with English abstract).
[42] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
[43] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01999
[44] Devkota K P, Manschadi A, Lamers J P A, Devkota M, Vlek P L G. Mineral nitrogen dynamics in irrigated rice-wheat system under different irrigation and establishment methods and residue levels in arid drylands of Central Asia. Eur J Agron, 2013, 47: 65-76.
[45] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. J Plant Nutr Fert, 2021, 27: 1388-1396 (in Chinese with English abstract).
[46] 李敏, 罗德强, 蒋明金, 江学海, 姬广梅, 李立江, 周维佳. 不同减氮栽培模式对杂交籼稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2022, 28: 598-610.
Li M, Luo D Q, Jiang M J, Jiang X H, Ji G M, Li L J, Zhou W J. Effects of nitrogen-reduction cultivation models on nitrogen accumulation and yield of hybrid in indica rice. J Plant Nutr Fert, 2022, 28: 598-610 (in Chinese with English abstract).
[47] 侯云鹏, 韩立国, 孔丽丽, 尹彩侠, 秦裕波, 李前, 谢佳贵. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡. 植物营养与肥料学报, 2015, 21: 836-845.
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. J Plant Nutr Fert, 2015, 21: 836-845 (in Chinese with English abstract).
[48] 杨建昌, 刘立军, 张耗. 高产水稻氮肥高效利用原理与技术. 北京: 科学出版社, 2022. pp 1-22.
Yang J C, Liu L J, Zhang H. Principle and Technology of Efficient Utilization of Fertilizer Nitrogen in High-Yielding Rice. Beijing: Science Press, 2022. pp 1-22 (in Chinese).
[1] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[2] 延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响[J]. 作物学报, 2024, 50(8): 2014-2024.
[3] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[4] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[5] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[6] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[7] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[8] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[9] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[10] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[11] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[12] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[13] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[14] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[15] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[4] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[8] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[9] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[10] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .