欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 161-173.doi: 10.3724/SP.J.1006.2025.44065

• 耕作栽培·生理生化 • 上一篇    下一篇

密植对不同年代大豆品种群体光合生产和产量形成的影响

丁树启1,2(), 程彤1(), 王弼琨1,2, 于德彬1, 饶德民1, 孟凡钢1, 赵胤凯1, 王晓慧1, 张伟1,*()   

  1. 1吉林省农业科学院(中国农业科技东北创新中心)大豆研究所, 吉林长春 130033
    2吉林农业大学农学院, 吉林长春 130118
  • 收稿日期:2024-04-19 接受日期:2024-08-15 出版日期:2025-01-12 网络出版日期:2024-08-26
  • 通讯作者: *张伟, E-mail: zw.0431@163.com
  • 作者简介:丁树启, E-mail: dingshuqi0710@163.com;
    程彤, E-mail: 844423156@qq.com<
    **同等贡献
  • 基金资助:
    吉林省农业科技创新工程项目(CXGC2022RCB003);吉林省农业科技创新工程项目(CXGC2022RCG011);国家自然科学基金区域创新发展联合基金项目(U21A20215);吉林省科技发展计划项目(20240602046RC);财政部和农业农村部国家现代农业产业技术体系(CARS-04-PS14);吉林省农业科学院(中国农业科技东北创新中心)基本科研经费项目(KYJF2023DX012)

Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras

DING Shu-Qi1,2(), CHENG Tong1(), WANG Bi-Kun1,2, YU De-Bin1, RAO De-Min1, MENG Fan-Gang1, ZHAO Yin-Kai1, WANG Xiao-Hui1, ZHANG Wei1,*()   

  1. 1Institute of Soybean Research, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, China
    2College of Agriculture, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2024-04-19 Accepted:2024-08-15 Published:2025-01-12 Published online:2024-08-26
  • Contact: *E-mail: zw.0431@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    Jilin Province Agricultural Science and Technology Innovation Project(CXGC2022RCB003);Jilin Province Agricultural Science and Technology Innovation Project(CXGC2022RCG011);National Natural Science Foundation of China Regional Innovation and Development Joint Fund Project(U21A20215);Science and Technology Development Plant Project of Jilin Province, China(20240602046RC);China Agriculture Research System of MOF and MARA(CARS-04-PS14);Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China) Basic Research Funding Project(KYJF2023DX012)

摘要:

密植是挖掘优良大豆品种生产潜力的有效途径, 但对于育种时间跨度长达百年的大豆品种而言, 其对密植的响应差异仍不清楚。为明晰密植对不同年代大豆品种群体光合生产和产量形成的影响, 以1930s—2020s育成的50个大豆品种为试验材料, 探究了不同年代大豆品种(1930s—1940s、1950s—1960s、1970s—1980s、1990s—2000s和2010s—2020s)在不同密度水平(常规密度200,000株 hm-2和高密度300,000株 hm-2)下叶面积指数(LAI)、叶面积指数增长率(LGR)、光合势(LAD)、干物质积累、作物生长率(CGR)、下部叶片衰老和产量的响应差异。结果表明, 随着育成年代的推进, 大豆群体光合生产能力和产量均逐渐提升。与老品种(1930s—1940s, 1950s—1960s和1970s—1980s)相比, 新品种(1990s—2000s和2010s—2020s)在高密度下表现出更好的生长状态。新品种在高密度下的叶面积指数(LAI)增幅更大, 盛荚期(R4)的LAI的增幅依次为17.79%和23.06%, 盛荚—鼓粒期(R4—R6)的LAI衰减更缓慢, LAD增幅更大。在R6期, 新品种在高密度下的干物质积累增幅更大, 依次为25.28%和28.96%, 其CGR也显著增加(P < 0.05), 依次为21.66%和25.38%; 此外, 新品种在高密度下下部叶片黄叶节位上移量和叶片SPAD值的降幅较小, 表现出较强的抗衰老特性。在产量方面, 新品种在高密度下单位面积粒数和荚数增幅较大, 百粒重降幅较小, 产量显著(P < 0.05)提升, 其产量增幅依次为4.49%和5.04%。综上, 生育初期, 新品种在高密度下表现出较强的“源”增加能力, 其叶源值高且稳定, 光能截获量大, 干物质积累多, 促进籽粒“库”快速发育; 而生育后期, 其叶面积指数衰减速度较慢, 群体光合能力强, 籽粒灌浆充分, 因而显著提高单位面积粒数和荚数, 从而弥补百粒重的微降, 实现大豆产量显著提升。

关键词: 大豆, 密植, 不同年代, 光合生产, 产量

Abstract:

Planting density is an effective way to harness the production potential of elite soybean varieties, yet the response differences to planting density among soybean varieties over a breeding time span of up to 100 years remain unclear. To clarify the effects of planting density on the photosynthetic production and yield formation of soybean varieties released in different eras, this study used 50 soybean varieties released from the 1930s to the 2020s. The response differences in leaf area index (LAI), leaf area index growth rate (LGR), leaf area duration (LAD), dry matter accumulation, crop growth rate (CGR), lower leaf senescence, and yield were explored under different planting densities (normal density of 200,000 plants hm-2 and high density of 300,000 plants hm-2) for soybean varieties from different eras (1930s-1940s, 1950s-1960s, 1970s-1980s, 1990s-2000s, and 2010s-2020s). The results showed that with the advancement of breeding eras, both the photosynthetic production capacity and yield of soybeans gradually increased. Compared with old varieties (1930s-1940s, 1950s-1960s, and 1970s-1980s), new varieties (1990s-2000s and 2010s-2020s) showed better growth status at high density. The increase in LAI of new varieties at high density was more substantial, with increases of 17.79% and 23.06% at the R4 stage, and the decrease in LAI from the R4 to R6 stage was slower, resulting in a more significant increase in LAD. At the R6 stage, the dry matter accumulation of new varieties at high density increased by 25.28% and 28.96%, respectively, and their CGR also significantly increased (P < 0.05) by 21.66% and 25.38%, respectively. Moreover, the new varieties showed strong senescence resistance at high density, with smaller decreases in the amount of upward displacement of yellow leaf nodes and leaf SPAD values of the lower leaves. In terms of yield, new varieties experienced greater increases in the number of seeds and pods per unit area at high density, with a smaller decrease in 100-seed weight, resulting in a significant (P < 0.05) yield increases of 4.49% and 5.04%, respectively. In conclusion, at the beginning of the growth period, new varieties showed a strong ability to increase the ‘source’ under high density, with high and stable leaf source values, greater light energy interception, and substantial dry matter accumulation, promoting the rapid development of the seed ‘sink’. During the later growth period, the slower decrease in LAI, robust photosynthetic capacity of the population and thorough seed filling significantly increased the number of seeds and pods per unit area, thereby compensating for the slight decrease in 100-seed weight and achieving a significant increase in soybean yield.

Key words: soybean, density planting, different eras, photosynthetic production, yield

图1

2022-2023年的气象数据"

图2

不同年代大豆品种"

图3

不同年代大豆品种生育期间叶面积指数动态 ND: 常规密度; HD: 高密度。R2: 盛花期; R4: 盛荚期; R6: 鼓籽期。B1、B2、B3、B4和B5分别代表1930s-1940s、1950s-1960s、1970s-1980s、1990s-2000s和2010s-2020s。小写字母表示在相同密度下不同年代间P < 0.05时的差异显著性; 大写字母表示在相同年代下不同密度处理间P < 0.05时的差异显著性; **表示P < 0.01, *表示P < 0.05; F值为双因素方差分析结果。"

表1

不同年代大豆品种叶面积增长率和光合势对密植的响应"

密度
Density
年代
Eras
叶面积指数增长率 LGR (LAI d-1) 光合势 LAD (d m2 m-2)
VE-R2 R2-R4 R4-R6 VE-R2 R2-R4 R4-R6
ND B1 0.0514±0.0005 dB 0.1582±0.0090 bB -0.1107±0.0138 aA 64.27±0.60 dB 66.56±1.18 dB 74.83±2.19 eB
B2 0.0544±0.0007 cB 0.1654±0.0075 abB -0.1097±0.0053 aA 67.99±0.90 cB 70.14±1.06 cB 78.19±1.50 dB
B3 0.0594±0.0003 bB 0.1692±0.0035 abB -0.1028±0.0077 aA 74.29±0.39 bB 74.97±0.61 bB 84.57±0.11 cB
B4 0.0617±0.0019 aB 0.1706±0.0077 abB -0.0999±0.0106 aA 77.10±2.39 aB 77.08±0.94 abB 87.30±0.71 bB
B5 0.0622±0.0003 aB 0.1759±0.0059 aB -0.0936±0.0052 aA 77.74±0.40 aB 78.28±0.70 aB 90.18±0.81 aB
HD B1 0.0578±0.0014 eA 0.1947±0.0112 bA -0.1481±0.0109 cB 72.29±1.71 eA 77.28±2.78 eA 84.01±2.81 eA
B2 0.0621±0.0001 dA 0.2016±0.0093 bA -0.1417±0.0101 bcB 77.64±0.18 dA 81.92±1.31 dA 90.58±1.33 dA
B3 0.0661±0.0012 cA 0.2019±0.0103 bA -0.1374±0.0230 abcB 82.69±1.44 cA 85.40±0.88 cA 94.72±2.29 cA
B4 0.0702±0.0006 bA 0.2084±0.0141 bA -0.1267±0.0136 abB 87.69±0.74 bA 89.74±1.60 bA 101.54±1.67 bA
B5 0.0724±0.0007 aA 0.2287±0.0028 aA -0.1168±0.0063 aB 90.48±0.89 aA 94.57±0.76 aA 110.73±0.69 aA
F B 197.40** 7.75** 2.95* 197.38** 130.09** 198.48**
F-value D 549.64** 162.62** 54.33** 549.59** 748.22** 645.67**
B×D 4.05* 1.3 0.86 4.05* 5.43** 14.83**

图4

不同年代大豆品种生育期间干物质积累动态 处理同图3。R2: 盛花期; R4: 盛荚期; R6: 鼓粒期。小写字母表示在相同密度下不同年代间P < 0.05时的差异显著性; 大写字母表示在相同年代下不同密度处理间P < 0.05时的差异显著性; **表示P < 0.01, *表示P < 0.05; F值为双因素方差分析结果。"

图5

不同年代大豆品种的作物生长率对密植的响应 处理同图3。VE-R2: 出苗-盛花期; R2-R4: 盛花-盛荚期; R4-R6: 盛荚-鼓粒期。小写字母表示在相同密度下不同年代间P < 0.05时的差异显著性; 大写字母表示在相同年代下不同密度处理间P < 0.05时的差异显著性; ** 表示P < 0.01, * 表示P < 0.05; F值为双因素方差分析结果。"

图6

不同年代大豆品种生育期间下部黄叶节位动态 处理同图3。R2: 盛花期; R4: 盛荚期; R6: 鼓粒期。小写字母表示在相同密度下不同年代间P < 0.05时的差异显著性; 大写字母表示在相同年代下不同密度处理间P < 0.05时的差异显著性; ** 表示P < 0.01, * 表示P < 0.05; F值为双因素方差分析结果。"

图7

不同年代大豆品种生育期间下部SPAD值动态 处理同图3。R2: 盛花期; R4: 盛荚期; R6: 鼓粒期。小写字母表示在相同密度下不同年代间P < 0.05时的差异显著性; 大写字母表示在相同年代下不同密度处理间P < 0.05时的差异显著性; ** 表示P < 0.01, * 表示P < 0.05; F值为双因素方差分析结果。"

表2

不同年代大豆品种产量和产量构成对密植的响应"

密度
Density
年代
Eras
单位面积荚数
Pods per unit area (pod m-2)
单位面积粒数
Seeds per unit area (seed m-2)
百粒重
100-seed weight (g)
产量
Yield (kg hm-2)
ND B1 953.16±63.36 bB 1715.12±38.56 cB 19.09±0.16 cA 2962.63±50.07 eA
B2 979.83±41.93 bB 1884.49±95.26 bB 19.32±0.25 bA 3084.34±61.82 dA
B3 996.11±50.47 bB 1921.96±43.44 bB 19.44±0.20 bA 3287.16±87.08 cA
B4 1008.85±20.62 abB 2005.79±89.70 bB 19.97±0.22 aA 3520.82±19.95 bB
B5 1092.65±48.33 aB 2343.43±103.85 aB 20.12±0.01 aA 4241.44±35.64 aB
HD B1 1088.49±36.24 cA 2032.40±54.74 dA 18.24±0.08 eB 3024.25±102.34 eA
B2 1189.70±77.68 bA 2355.93±79.42 cA 18.56±0.08 dB 3173.99±22.34 dA
B3 1222.46±30.86 bA 2431.37±71.83 cA 18.82±0.09 cB 3341.72±29.17 cA
B4 1268.26±45.15 bA 2629.91±166.25 bA 19.47±0.03 bB 3678.99±34.84 bA
B5 1424.01±92.43 aA 3242.99±136.82 aA 19.73±0.15 aB 4455.40±23.91 aA
F B 16.82** 116.31** 103.73** 566.77**
F-value D 148.35** 399.83** 179.09** 32.76**
B×D 2.81 11.84** 3.21* 2.3

表3

密植作物农艺参数对产量的灰色关联度分析"

参数
Parameter
常规密度 Normal density 高密度 High density 处理间差异 Difference between treatment
关联系数
Correlation coefficient
排序
Rank
关联系数
Correlation coefficient
排序
Rank
关联系数
Correlation coefficient
排序
Rank
LAI 0.7904 6 0.8589 4 0.8824 2
DM 0.7348 9 0.7729 9 0.8523 4
YL 0.5638 10 0.5451 10 0.4670 10
SPAD-L 0.8399 4 0.8081 7 0.7356 8
LGR 0.8239 5 0.9111 2 0.7259 9
LAD 0.7816 7 0.8421 6 0.8850 1
CGR 0.7393 8 0.7775 8 0.8704 3
SPUA 0.9261 2 0.9178 1 0.8167 5
PPUA 0.9373 1 0.8926 3 0.8036 6
100-SW 0.8518 3 0.8532 5 0.7881 7
[1] 冯锋, 张志楠, 谷勇哲, 何俊卿, 田志喜. 提升我国大豆供给能力路径刍议. 中国科学院院刊, 2022, 37: 1281-1289.
Feng F, Zhang Z N, Gu Y Z, He J Q, Tian Z X. Discussion on approaches to improving soybean supply capacity in China. Bull Chin Acad Sci, 2022, 37: 1281-1289 (in Chinese with English abstract).
[2] 赵团结, 盖钧镒, 李海旺, 邢邯, 邱家驯. 超高产大豆育种研究的进展与讨论. 中国农业科学, 2006, 39: 29-37.
Zhao T J, Gai J Y, Li H W, Xing H, Qiu J X. Progress and discussion of breeding research for super-high yield soybean. Sci Agric Sin, 2006, 39: 29-37 (in Chinese with English abstract).
[3] Cui X, Dong Y, Gi P, Wang H, Xu K, Zhang Z. Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the Northern China. Photosynthetica, 2016, 54: 81-86.
[4] 郑伟, 刘成贵, 谢甫绨, 郭泰, 王志新, 李灿东, 张振宇, 张茂明, 刘婧琦. 种植密度对黑龙江省不同年代育成大豆品种的影响. 核农学报, 2015, 29: 1419-1426.
Zheng W, Liu C G, Xie F T, Guo T, Wang Z X, Li C D, Zhang Z Y, Zhang M M, Liu J Q. Effects of plangting density on soybean varieties of different years in Heilongjiang province. J Nucl Agric Sci, 2015, 29: 1419-1426 (in Chinese with English abstract).
[5] 孟田. 不同年代育成大豆品种物质形成和养分吸收规律的研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016.
Meng T. Study on Matter Accumulation and Nutrient Absorption of Soybean Cultivars Released in Different Decades. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[6] Li S Y, Teng F, Rao D M, Zhang H J, Wang H Y, Yao X D, Yu C M, Li C H, Zhao M Z, St Martin S K, Xie F T. Photosynthesis of soybean cultivars released in different decades after grafting onto record-yield cultivars as root stocks. Photosynthetica, 2017, 55: 579-587.
[7] Todeschini M H, Milioli A S, Rosa A C, Dallacorte L V, Panho M C, Marchese J A, Benin G. Soybean genetic progress in South Brazil: physiological, phenological and agronomic traits. Euphytica, 2019, 215: 124.
[8] 夏冬冬. 吉林省不同时期育成大豆品种叶片衰老生理特性的研究. 吉林农业大学硕士学位论文, 吉林长春, 2017.
Xia D D. Study on Physiological Characteristics of Leaf Senescence of Soybean Cultivars with Different Released Years in Jilin Province. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2017 (in Chinese with English abstract).
[9] 张治安. 吉林省大豆品种遗传改良中光合特性和硝酸还原酶活性变化的研究. 吉林农业大学博士学位论文, 吉林长春, 2007.
Zhang Z A.Research on Changes of Photosynthetic Characteristics and Nitrate Reductase Activity from Genetic Improvement of Jilin Soybean Cultivars. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2007 (in Chinese with English abstract).
[10] 胡国玉, 李杰坤, 王大刚, 吴倩, 王维虎, 黄志平, 张磊. 安徽省不同年代育成大豆品种的性状演变分析. 大豆科学, 2020, 39: 657-666.
Hu G Y, Li J K, Wang D G, Wu Q, Wang W H, Huang Z P, Zhang L. Evolution analysis of main characters of soybean varieties released in different years in Anhui province. Soybean Sci, 2020, 39: 657-666 (in Chinese with English abstract).
[11] 郑洪兵, 徐克章, 赵洪祥, 李大勇, 杨光宇, 刘武仁, 陆静梅. 吉林省大豆品种遗传改良过程中主要农艺性状的变化. 作物学报, 2008, 34: 1042-1050.
Zheng H B, Xu K Z, Zhao H X, Li D Y, Yang G Y, Liu W R, Lu J M. Changes of main agronomic traits with genetic improvement of soybean [Glycine max (L.) Merr.] cultivars in Jilin province, China. Acta Agron Sin, 2008, 34: 1042-1050 (in Chinese with English abstract).
[12] Li S Y, Teng F, Rao D M, Yao X D, Zhang H J, Wang H Y, Song S H, St Martin S K, Xie F T. Agronomic traits of soybean cultivars released in different decades after grafting record-yield cultivar as rootstock. Plant Breed, 2017, 136: 133-138.
[13] 杨淞超, 李彦生, 刘长锴, 刘晓冰, 王光华, 毛健伟, 殷奎德, 金剑. 大豆产量形成对大气CO2浓度升高响应的基因型差异. 大豆科学, 2015, 34: 819-825.
Yang S C, Li Y S, Liu C K, Liu X B, Wang G H, Mao J W, Yin K D, Jin J. The response of yield formation to elevated atmospheric CO2 in different soybean cultivars. Soybean Sci, 2015, 34: 819-825 (in Chinese with English abstract).
[14] 丁树启, 程彤, 饶德民, 王弼琨, 孟凡钢, 于德彬, 张鸣浩, 张伟. 大豆品种改良过程中光合特性及产量性状对种植密度的响应. 中国油料作物学报, 2024, 46: 1058-1067.
Ding S Q, Cheng T, Rao D M, Wang B K, Meng F G, Yu D M, Zhang M H, Zhang W. Response of photosynthetic characteristics and yield traits to planting density during improvement of soybean varieties. Chin J Oil Crop Sci, 2024, 46: 1058-1067 (in Chinese with English abstract).
[15] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响. 作物学报, 2023, 49: 3090-3099.
Gao C, Chen P, Du Q, Fu Z D, Luo K, Lin P, Li Y L, Liu S S, Yong T W, Yang W Y. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean. Acta Agron Sin, 2023, 49: 3090-3099 (in Chinese with English abstract).
[16] Wells R. Soybean growth response to plant density: relationships among canopy photosynthesis, leaf area, and light interception. Crop Sci, 1991, 31: 755-761.
[17] 宋微微, 杜吉到, 郑殿峰, 冯乃杰, 王玲玲, 陈丽霞, 李振东. 大豆干物质积累、分配规律的研究进展. 大豆科学, 2008, 27: 1062-1066.
Song W W, Du J D, Zheng D F, Feng N J, Wang L L, Chen L X, Li Z D. Research progress on dry matter accumulation and distribution rules of soybean population. Soybean Sci, 2008, 27: 1062-1066 (in Chinese with English abstract).
[18] 黄俊霞. 耐密大豆品种高产群体生理特征分析. 吉林农业大学硕士学位论文, 吉林长春, 2020.
Huang J X. Analysis of Physiological Characteristics of High Yield Population of Resistant Soybean Varieties. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2020 (in Chinese with English abstract).
[19] 王龑, 田庆久, 孙绍杰, 魏宏伟. 小麦LAI-2000观测值对辐亮度变化的响应. 生态学报, 2014, 34: 345-352.
Wang Y, Tian Q J, Sun S J, Wei H W. Response of change of wheat LAI measured with LAI-2000 to the radiance. Acta Ecol Sin, 2014, 34: 345-352 (in Chinese with English abstract).
[20] 吕书财, 徐瑶, 陈国兴, 张喜亭, 于舒函, 王永吉, 龚振平. 大豆冠层光合有效辐射、叶面积指数及产量对种植密度的响应. 江苏农业科学, 2018, 46(18): 68-72.
Lyu S C, Xu Y, Chen G X, Zhang X T, Yu S H, Wang Y J, Gong Z P. Effects of plant densities on canopy photosynthetic radiation, leaf area index and yield of soybean. Jiangsu Agric Sci, 2018, 46(18): 68-72 (in Chinese with English abstract).
[21] 沈秀瑛, 戴俊英, 胡安畅, 顾慰连, 郑波. 玉米群体冠层特征与光截获及产量关系的研究. 作物学报, 1993, 19: 246-252.
Shen X Y, Dai J Y, Hu A C, Gu W L, Zheng B. Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.). Acta Agron Sin, 1993, 19: 246-252 (in Chinese with English abstract).
[22] 程伟燕, 李志刚, 李瑞平. 密度对大豆光合特性和产量的影响. 作物杂志, 2010, (4): 69-72.
Cheng W Y, Li Z G, Li R P. Effect of densities on photosynthetic characteristic and yield in soybean. Crops, 2010, (4): 69-72 (in Chinese with English abstract).
[23] Agarwal D K, Billore S D, Sharma A N, Dupare B U, Srivastava S K. Soybean: introduction, improvement, and utilization in India: problems and prospects. Agric Res, 2013, 2: 293-300.
[24] Kumudini S, Hume D J, Chu G. Genetic improvement in short season soybeans: I. Dry matter accumulation, partitioning, and leaf area duration. Crop Sci, 2001, 41: 391-398.
[25] 胡萌. 密度对春玉米光合与衰老生理及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2009.
Hu M. Effect of Plant Density on Photosynthetic Senescence Physiology and Yield of Spring Corn. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract).
[26] 刘春娟, 冯乃杰, 郑殿峰, 宫香伟, 孙福东, 石英, 崔洪秋, 张盼盼, 赵晶晶. 植物生长调节剂S3307和DTA-6对大豆源库碳水化合物代谢及产量的影响. 中国农业科学, 2016, 49: 657-666.
Liu C J, Feng N J, Zheng D F, Gong X W, Sun F D, Shi Y, Cui H Q, Zhang P P, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on carbohydrate content and yield in soybean. Sci Agric Sin, 2016, 49: 657-666 (in Chinese with English abstract).
[27] 张晓娜, 陈平, 庞婷, 杜青, 付智丹, 周颖, 任建锐, 杨文钰, 雍太文. 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响. 四川农业大学学报, 2017, 35: 484-490.
Zhang X N, Chen P, Pang T, Du Q, Fu Z D, Zhou Y, Ren J Y, Yang W Y, Yong T W. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system. J Sichuan Agric Univ, 2017, 35: 484-490 (in Chinese with English abstract).
[28] 姬忠明, 罗万宇, 王小春. 带宽、玉米密度对鲜食玉米鲜食大豆带状间作群体物质积累及产量的影响. 四川农业大学学报, 2023, 41: 791-800.
Ji Z M, Luo W Y, Wang X C. Effects of bandwidth and maize density on matter accumulation and yield of fresh corn and soybean strip intercropping population. J Sichuan Agric Univ, 2023, 41: 791-800 (in Chinese with English abstract).
[29] Shiraiwa T, Hashikawa U. Accumulation and partitioning of nitrogen during seed filling in old and modern soybean cultivars in relation to seed production. Jpn J Crop Sci, 1995, 64: 754-759.
[30] Umburanas R C, Kawakami J, Ainsworth E A, Favarin J L, Anderle L Z, Dourado-Neto D, Reichardt K. Changes in soybean cultivars released over the past 50 years in southern Brazil. Sci Rep, 2022, 12: 508.
[31] 赵波, 吴丽华, 金文林, 濮绍京. 小豆生长发育规律研究 Ⅹ. 小豆群体干物质生产与产量形成的关系. 北京农学院学报, 2006, 21(1): 24-27.
Zhao B, Wu L H, Jin W L, Pu S J. The relationship between dry substance production and yield formation in adzuki bean population. J Beijing Univ Agric, 2006, 21(1): 24-27 (in Chinese with English abstract).
[32] De Bruin J L, Pedersen P. New and old soybean cultivar responses to plant density and intercepted light. Crop Sci, 2009, 49: 2225-2232.
[33] 朱元刚, 高凤菊. 不同间作模式对鲁西北地区玉米-大豆群体光合物质生产特征的影响. 核农学报, 2016, 30: 1646-1655.
Zhu Y G, Gao F J. Effects of different maize and soybean intercropping patterns on population characteristics of photosynthetic and matter production in northwest Shandong region. J Nucl Agric Sci, 2016, 30: 1646-1655 (in Chinese with English abstract).
[34] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展. 作物学报, 2022, 48: 1871-1883.
Guo Y, Chai Q, Yin W, Fan H. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize. Acta Agron Sin, 2022, 48: 1871-1883 (in Chinese with English abstract).
[35] Franklin K A. Shade avoidance. New Phytol, 2008, 179: 930-944.
[36] 时元智, 崔远来, 王力, 才硕, 余双, 刘路广. 氮磷调控及紫云英配施提高早稻冠层特性和产量. 农业工程学报, 2014, 30(1): 89-97.
Shi Y Z, Cui Y L, Wang L, Cai S, Yu S, Liu L G. Regulation of nitrogen-phosphorus and chinese milk vetch improve canopy characteristics and yield of early season rice. Trans CSAE, 2014, 30(1): 89-97 (in Chinese with English abstract).
[37] 王弼琨, 于德彬, 赵洪颜, 孟凡钢, 张伟, 魏代霞, 李志国. 超高产大豆发育期不同节位叶片净光合速率与SPAD值变化分析. 大豆科学, 2022, 41: 172-178.
Wang B K, Yu D B, Zhao H Y, Meng F G, Zhang W, Wei D X, Li Z G. Analysis of net photosynthetic rate and SPAD values of super-high yield soybean leaves at different nodes during different developing stages. Soybean Sci, 2022, 41: 172-178 (in Chinese with English abstract).
[38] 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8: 361-367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8: 361-367 (in Chinese with English abstract).
[39] 任海红, 马俊奎, 刘学义, 任小俊. 山西省审定大豆品种主要农艺性状、产量及品质的演变分析. 中国油料作物学报, 2018, 40: 762-768.
Ren H H, Ma J K, Liu X Y, Ren X J. Evolution analysis of major agronomic traits, yield and quality of soybean varieties of Shanxi province. Chin J Oil Crop Sci, 2018, 40: 762-768 (in Chinese with English abstract).
[40] Suhre J J, Weidenbenner N H, Rowntree S C, Wilson E W, Naeve S L, Conley S P, Casteel S N, Diers B W, Esker P D, Specht J E, Davis V M. Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron J, 2014, 106: 1631-1642.
[1] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[2] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[3] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[4] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[5] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[6] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[7] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[8] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[9] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[10] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
[11] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[12] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[13] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[14] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[15] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .