欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1022-1036.doi: 10.3724/SP.J.1006.2025.44155

• 耕作栽培·生理生化 • 上一篇    下一篇

黄腐酸、褐藻寡糖包衣对迟播油菜萌发成苗及产量的影响

厍惠洁1(), 孙明珠2, 李世刚3, 王东仙3, 程泰4, 蒋博4, 陈爱武4, 王晶1, 赵杰1, 汪波1, 蒯婕1, 徐正华1,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 湖北洪山实验室 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2江西省农业技术推广中心, 江西南昌 330046
    3荆门市气象局, 湖北荆门 448000,
    4湖北省油菜办公室, 湖北武汉 430070
  • 收稿日期:2024-09-14 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-20
  • 通讯作者: 徐正华, E-mail: xzh@mail.hzau.edu.cn
  • 作者简介:E-mail: shehuijie@webmail.hzau.edu.cn
  • 基金资助:
    湖北省重点研发计划项目(2023BBB028);湖北省揭榜挂帅项目(HBZY2023B001-01)

Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed

SHE Hui-Jie1(), SUN Ming-Zhu2, LI Shi-Gang3, WANG Dong-Xian3, CHENG Tai4, JIANG Bo4, CHEN Ai-Wu4, WANG Jing1, ZHAO Jie1, WANG Bo1, KUAI Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jiangxi Agricultural Technology Extension Center, Nanchang 330046, Jiangxi, China
    3Jingmen Meteorological Bureau, Jingmen 448000, Hubei, China
    4Hubei Department of Rape Production Management, Wuhan 430070, Hubei, China
  • Received:2024-09-14 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-20
  • Contact: E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028);Hubei Provincial Project(HBZY2023B001-01)

摘要:

播期推迟, 油菜出苗率和越冬期生物量显著下降, 确保出苗质量和增加越冬期生物量是提高迟播油菜抗逆稳产能力的重要措施。本研究以中双11号为材料, 设置裸种子对照组(CK)、丸粒化基础配方(BC4)、包膜基础配方(BC0)、丸粒化负载2%的黄腐酸(2%F)和3%的褐藻寡糖(3%H)、用200 mg L-1的黄腐酸包膜(200F)和400 mg L-1的褐藻寡糖包膜(400H)等7个处理在武汉进行10月26日播种的田间小区试验, 探讨黄腐酸和褐藻寡糖包衣对迟播油菜萌发出苗、幼苗生长及产量的影响。 结果表明,采用黄腐酸和褐藻寡糖种子包衣(丸粒化、包膜)可提升低温条件下油菜种子出苗质量, 并增强幼苗抗寒性, 增加越冬期生物量。2年迟播条件下, CK处理出苗率分别为53.6%、59.4%, 黄腐酸和褐藻寡糖丸粒化及包膜处理的出苗率均显著高于CK、丸粒化基础配方以及包膜基础配方。黄腐酸和褐藻寡糖包衣均增加越冬期干物质积累, 较CK显著提高越冬期的株高和根颈粗。各处理的产量存在差异, 与CK相比, 2022—2023年2%浓度黄腐酸丸粒化和3%浓度褐藻寡糖丸粒化处理的产量分别增加11.35%和13.05%, 2023—2024年分别增加16.01%和18.20%。越冬期抗寒性的提高是黄腐酸和褐藻寡糖提高生物量和产量的重要机制, 黄腐酸和褐藻寡糖处理均显著提高了低温条件下油菜幼苗的可溶性糖和脯氨酸含量, 增强了抗氧化系统的酶活性, 降低了H2O2、MDA和O2-的含量, 从而减轻低温损伤。其中, 400 mg L-1褐藻寡糖包膜处理的可溶性糖含量较CK提高53.5%; 200 mg L-1黄腐酸包膜处理的MDA含量较CK降低53.38%。同时, 黄腐酸和褐藻寡糖包衣还提高了油菜幼苗中的IAA含量。本研究结果可为提高迟播油菜抗逆稳产能力提供技术支撑。

关键词: 油菜, 迟播, 丸粒化, 包膜, 黄腐酸, 褐藻寡糖

Abstract:

Delayed sowing significantly reduces the seedling emergence rate and overwintering biomass of oilseed rape. Ensuring high seedling emergence quality and increasing overwintering biomass are crucial strategies for improving the stress resistance and yield stability of late-sown oilseed rape. Using the rapeseed variety Zhongshuang 11, seven treatments were implemented, including a bare seed control (CK), basic pelletizing formulation (BC4), basic coating formulation (BC0), pelletizing with 2% fulvic acid (2%F) and 3% alginate oligosaccharide (3%H), and coating with 200 mg L-1 fulvic acid (200F) and 400 mg L-1 alginate oligosaccharide (400H). A field experiment was conducted in Wuhan, China, with sowing on October 26, to evaluate the effects of these treatments on germination, seedling growth, and yield performance of late-sown rapeseed. The results, this study investigated the effects of seed coatings containing fulvic acid and alginate oligosaccharides (via pelleting and coating) on improving seedling emergence, enhancing cold tolerance, and increasing overwintering biomass. Obtained over two years, showed that the emergence rate in the CK treatment was 53.6% and 59.4% in the 2022-2023 and 2023-2024 seasons, respectively. Treatments with fulvic acid and alginate oligosaccharides significantly improved emergence rates compared to CK, BC4, and BC0. These coatings also increased dry matter accumulation during the overwintering period and significantly enhanced plant height and root collar diameter compared to CK. Yield performance varied among treatments. Compared to CK, yields of pelletized seeds with 2% fulvic acid and 3% alginate oligosaccharide increased by 11.35% and 13.05% in 2022-2023, and by 16.01% and 18.20% in 2023-2024, respectively. Improving cold resistance during the overwintering period was a critical mechanism for enhancing biomass and yield through fulvic acid and alginate oligosaccharide treatments. Both fulvic acid and alginate oligosaccharide treatments significantly increased soluble sugar and proline contents in rapeseed seedlings under low-temperature conditions, enhanced antioxidant enzyme activities, and reduced the levels of H2O2, malondialdehyde (MDA), and O2-, thereby mitigating low-temperature damage. Notably, the soluble sugar content in seedlings treated with 400 mg L-1 alginate oligosaccharide coating was 53.5% higher than that in CK, while the MDA content in seedlings treated with 200 mg L-1 fulvic acid coating decreased by 53.38% compared to CK. Additionally, these treatments increased indole-3-acetic acid (IAA) content in rapeseed seedlings. The findings of this study provide technical support for enhancing the stress resistance and yield stability of late-sown oilseed rape.

Key words: rapeseed, late-sowing, seed pelletization, seed coating, fulvic acid, alginate oligosaccharide

表1

黄腐酸、褐藻寡糖丸粒化浓度筛选"

物质
Substance
编号
Number
浓度
Concentration
物质
Substance
编号
Number
浓度
Concentration
黄腐酸
Fulvic acid
1%F 1.0% 褐藻寡糖
Alginate
oligosaccharide
1%H 1.0%
2%F 2.0% 2%H 2.0%
3%F 3.0% 2.5%H 2.5%
4%F 4.0% 3%H 3.0%
5%F 5.0% 3.5%H 3.5%
4%H 4.0%
对照
Control
CK 裸种子
Bare seed
BC4 丸粒化基础配方
Pelletizing basic formulation

表2

黄腐酸、褐藻寡糖包膜浓度筛选"

物质
Substance
编号
Number
浓度
Concentration
物质
Substance
编号
Number
浓度
Concentration
黄腐酸
Fulvic acid
100F 100 mg L-1 褐藻寡糖
Alginate oligosaccharide
200H 200 mg L-1
200F 200 mg L-1 400H 400 mg L-1
300F 300 mgL-1 600H 600 mg L-1
400F 400 mg L-1 800H 800 mg L-1
对照
Control
CK 裸种子
Bare seed
BC0 包膜基础配方
Coating basic formulation

表3

用于迟播油菜丸粒化和包膜的不同物质及浓度"

对照
Contrast
编号
Number
丸粒化
Seed pelletization
编号
Number
包膜
Seed coating
编号
Number
裸种子
Bare seed
CK 2%黄腐酸
2% fulvic acid
2%F 200 mg L-1黄腐酸
200 mg L-1 fulvic acid
200F
丸粒化基础配方
Pelletizing basic formulation
BC4 3%褐藻寡糖
3% alginate oligosaccharide
3%H 400 mg L-1褐藻寡糖
400 mg L-1 alginate oligosaccharide
400H
包膜基础配方
Coating basic formulation
BC0

图1

2022-2023和2023-2024生长季的主要气象因子"

表4

黄腐酸、褐藻寡糖丸粒化对低温油菜种子萌发出苗及幼苗生长的影响"

处理
Treatment
平均发芽
时间
Mean
germination
time (d)
发芽率
Germination
rate
(%)
平均出苗
时间
Mean
emergence
time (d)
出苗率
Emergence
rate
(%)
根干重
Dry weight
of root
(mg)
苗干重
Dry weight
of shoot
(mg)
根长
Root length
(cm)
苗长
Stem
length
(cm)
黄腐酸
丸粒化
Fulvic acid
pelletization
CK 3.34 d 86.67 c 11.41 a 84.67 b 1.97 c 4.02 c 6.37 a 1.70 c
BC4 3.43 d 85.33 c 11.37 a 82.33 b 2.01 c 4.07 c 6.32 a 1.76 c
1%F 4.08 c 94.67 ab 10.48 b 94.67 a 2.45 b 4.61 ab 6.05 a 2.11 b
2%F 4.19 c 98.67 a 10.42 b 96.00 a 2.55 a 4.88 a 6.13 a 2.44 a
3%F 4.32 bc 97.33 ab 10.67 b 92.00 a 2.48 b 4.67 a 6.23 a 2.43 a
4%F 4.67 b 93.33 abc 10.80 b 90.67 a 2.60 a 4.81 a 6.34 a 2.28 b
5%F 5.19 a 90.67 bc 11.25 a 86.00 b 2.32 bc 4.31 b 5.78 a 2.19 b
褐藻寡糖
丸粒化
Alginate
oligosaccharide pelletization
CK 4.19 a 86.00 c 11.18 a 82.00 b 1.87 b 3.66 d 5.87 bc 1.74 d
BC4 4.07 a 85.67 c 11.20 a 82.00 b 1.83 b 3.73 d 5.75 bc 1.81 d
1%H 3.92 b 94.00 b 10.62 d 89.33 a 2.13 a 4.40 bc 6.48 ab 2.19 bc
2%H 3.87 bc 93.33 b 10.53 d 90.67 a 2.50 a 4.77 b 6.32 abc 2.13 bcd
2.5%H 3.61 cd 96.00 ab 10.52 d 92.00 a 2.52 a 4.64 bc 6.96 a 2.63 a
3%H 3.44 d 99.33 a 10.31 d 94.00 a 2.52 a 5.36 a 6.92 a 2.46 ab
3.5%H 3.50 d 96.00 ab 10.53 d 90.00 a 2.45 a 4.24 c 5.57 c 2.02 cd
4%H 3.62 cd 91.33 b 10.56 d 92.00 a 2.44 a 4.38 bc 5.91 bc 2.17 bc

表5

黄腐酸、褐藻寡糖包膜对低温油菜种子萌发出苗及幼苗生长的影响"

处理
Treatment
平均发芽时间
Mean germination time
(d)
发芽率
Germination rate
(%)
平均出苗时间
Mean emergence time
(d)
出苗率
Emergence rate
(%)
黄腐酸
包膜
Fulvic acid coating
CK 3.89 a 91.33 b 11.07 d 80.67 b
BC0 3.77 b 84.67 c 11.87 a 72.67 c
100F 3.46 e 92.67 b 11.50 c 82.00 b
200F 3.50 d 96.00 a 11.19 d 84.67 a
300F 3.69 c 95.33 a 11.74 b 84.67 a
400F 3.67 c 92.67 b 11.88 a 80.67 b
褐藻寡糖
包膜
Alginate oligosaccharide coating
CK 3.44 a 93.33 c 12.37 a 71.33 d
BC0 3.30 b 94.00 c 12.10 b 71.33 d
200H 3.10 c 95.33 ab 12.02 b 81.33 b
400H 2.98 d 96.00 ab 10.52 d 84.67 a
600H 2.80 e 97.33 a 11.01 c 85.33 a
800H 3.35 ab 94.00 c 12.13 b 76.67 c
处理
Treatment
根干重
Dry weight of root (mg)
苗干重
Dry weight of shoot (mg)
根长
Root length(cm)
苗长
Stem length (cm)
黄腐酸
包膜
Fulvic acid coating
CK 1.20 bc 4.10 d 7.01 b 1.93 e
BC0 1.04 e 4.16 c 7.09 a 2.11 c
100F 1.18 c 4.22 b 7.08 a 2.14 bc
200F 1.25 a 4.34 a 7.00 b 2.25 a
300F 1.23 bc 4.24 b 6.92 c 2.19 ab
400F 1.09 d 4.16 c 6.86 d 2.01 d
褐藻寡糖
包膜
Alginate oligosaccharide coating
CK 1.19 b 4.15 d 6.24 c 2.34 c
BC0 1.05 c 4.48 c 6.15 d 2.38 c
200H 1.29 a 4.67 b 6.73 b 2.53 a
400H 1.27 a 4.77 a 6.93 a 2.57 a
600H 1.26 a 4.61 b 6.70 b 2.47 b
800H 1.22 b 4.35 d 6.75 b 2.21 d

图2

黄腐酸、褐藻寡糖丸粒化、包膜对迟播油菜出苗的影响 不同小写字母表示同一年份不同处理间差异达显著水平(P < 0.05)。处理同表3。"

表6

黄腐酸、褐藻寡糖丸粒化和包膜对迟播油菜越冬期关键农艺性状的影响"

年份
Year
处理
Treatment
株高
Plant height
(cm)
根颈粗
Root-crown diameter (mm)
绿叶数
Green
leaves
总叶数
Total
leaves
地上部干重
Dry weight of shoot (g plant-1)
地下部干重
Dry weight of root (g plant-1)
2022-
2023
CK 20.21 c 3.75 c 4.67 d 5.11 c 1.49 d 0.14 b
BC4 22.08 abc 3.73 c 5.00 cd 5.67 b 1.53 cd 0.13 b
2%F 22.95 ab 4.33 b 6.00 a 6.33 a 1.94 ab 0.18 ab
3%H 23.90 a 4.25 b 5.67 b 5.67 b 1.95 ab 0.20 ab
BC0 21.46 bc 3.83 c 5.33 c 5.44 bc 1.83 bc 0.14 b
200F 23.16 ab 4.89 a 5.67 b 5.67 b 2.25 a 0.22 ab
400H 23.23 ab 4.31 b 5.67 b 5.89 b 2.02 ab 0.26 a
2023-
2024
CK 16.70 c 3.05 c 5.00 c 6.11 a 0.80 c 0.18 d
BC4 16.74 c 3.07 c 4.44 d 5.67 b 0.76 c 0.19 d
2%F 20.00 a 4.26 a 5.67 a 6.44 a 1.29 a 0.20 cd
3%H 20.00 a 4.39 a 5.11 bc 6.33 a 1.14 b 0.28 a
BC0 17.77 bc 3.42 bc 4.45 d 5.22 c 0.82 c 0.13 e
200F 18.36 b 4.49 a 5.56 ab 6.22 a 1.27 a 0.22 bc
400H 20.09 a 3.89 ab 4.67 cd 5.67 b 1.28 a 0.24 b
方差分析ANOVA
年份Year (Y) ** ** ** ** ** **
处理Treatment (T) ** ** ** ** ** **
年份×处理Y×T ns ** ** ** ns ns

表7

黄腐酸、褐藻寡糖丸粒化和包膜对迟播油菜产量及产量构成的影响"

年份
Year
处理
Treatment
产量
Yield
(kg hm-2)
成株率
Survival
rate (%)
单株产量
Yield
per plant (g)
单株角果数
Pod number per plant
每角粒数
Seed number
per pod
千粒重
1000-seed
weight (g)
2022-
2023
CK 2074.72 d 67.86 b 4.16 d 56.77 c 21.29 a 3.42 a
BC4 2230.64 bc 68.65 b 4.07 d 59.60 bc 20.04 a 3.40 a
2%F 2310.14 ab 74.60 a 4.62 b 66.30 a 20.82 a 3.44 a
3%H 2345.54 a 75.00 a 4.82 a 67.47 a 20.91 a 3.42 a
BC0 2127.40 cd 71.03 ab 4.34 c 60.13 b 20.75 a 3.43 a
200F 2232.61 bc 74.36 a 4.39 c 62.50 b 20.45 a 3.48 a
400H 2260.87 ab 71.83 ab 4.84 a 68.40 a 20.36 a 3.48 a
2023-
2024
CK 1373.53 e 69.12 c 3.18 e 52.14 e 19.86 a 3.07 a
BC4 1418.02 d 68.58 c 3.32 d 54.30 d 19.83 a 3.08 a
2%F 1594.43 ab 77.22 a 3.36 cd 55.71 bcd 20.25 a 3.08 a
3%H 1623.86 a 78.96 a 3.59 b 57.60 ab 20.03 a 3.09 a
BC0 1416.48 d 69.12 c 3.35 d 54.94 cd 19.62 a 3.07 a
200F 1545.41 c 71.81 bc 3.67 a 59.28 a 19.73 a 3.09 a
400H 1564.52 bc 75.27 ab 3.43 c 56.86 bc 19.58 a 3.08 a
方差分析ANOVA
年份Year (Y) ** ns ** ** ** **
处理Treatment (T) ** ** ** ** ns ns
年份×处理Y×T ns ns ** * ns ns

表8

丸粒化种子质量指标"

丸粒化处理
Pelleting
treatment
裂解度
Cracking rate (%)
有籽率
Seed rate
(%)
单籽率
Single seed rate (%)
单粒抗压强度
Compressive
strength (N)
丸粒化倍数
Pelletization multiple
整齐度
Uniformity
(%)
SC4 100 97 94 3.3 1.5 94
2%F 100 98 95 3.2 1.5 94
3%H 100 97 95 3.3 1.5 96

图3

黄腐酸、褐藻寡糖丸粒化、包膜对低温下油菜幼苗渗透调节物质的影响 不同小写字母表示同一年份不同处理间差异达显著水平(P < 0.05)。处理同表3。"

图4

黄腐酸、褐藻寡糖丸粒化、包膜对低温下油菜幼苗活性氧积累的影响 不同小写字母表示同一年份不同处理间差异达显著水平(P < 0.05)。处理同表3。"

图5

黄腐酸、褐藻寡糖丸粒化、包膜对低温下油菜幼苗抗氧化酶活性的影响 不同小写字母表示同一年份不同处理间差异达显著水平(P < 0.05)。处理同表3。"

图6

黄腐酸、褐藻寡糖丸粒化、包膜对低温下油菜激素含量的影响 不同小写字母表示同一年份不同处理间差异达显著水平(P < 0.05)。处理同表3。"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 等. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究. 作物学报, 2024, 50: 2091-2105.
doi: 10.3724/SP.J.1006.2024.34166
Lou H X, Huang X Y, Jiang M, Ning N, Bian M L, Zhang L, Luo D X, Qin M Q, Kuai J, Wang B, et al. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin. Acta Agron Sin, 2024, 50: 2091-2105 (in Chinese with English abstract).
[3] Elshafie H S, Camele I. Applications of absorbent polymers for sustainable plant protection and crop yield. Sustainability, 2021, 13: 3253.
[4] Pedrini S, Merritt D J, Stevens J, Dixon K. Seed coating: science or marketing spin? Trends Plant Sci, 2017, 22: 106-116.
doi: S1360-1385(16)30172-8 pmid: 27979716
[5] 王丹英, 应云卉, 徐春梅, 陈松, 章秀福. 水稻种子包衣技术的研究与应用. 中国稻米, 2012, 18(5): 20-24.
doi: 10.3969/j.issn.1006-8082.2012.05.006
Wang D Y, Ying Y H, Xu C M, Chen S, Zhang X F. Research and application of rice seed coating technology. China Rice, 2012, 18(5): 20-24 (in Chinese).
[6] 曲昭杰. 木醋液处理种子对油菜萌发生长的影响及应用技术研究. 华中农业大学硕士学位论文, 湖北武汉, 2023.
Qu Z J. Effect of Wood Vinegar Solution Treatment on Rapeseed Germination and Growth and Its Application Technology. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[7] Willenborg C J, Gulden R H, Johnson E N, Shirtliffe S J. Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agron J, 2004, 96: 786-791.
[8] 张丽丽, 史庆华, 巩彪. 中、碱性土壤条件下黄腐酸与磷肥配施对番茄生育和磷素利用率的影响. 中国农业科学, 2020, 53: 3567-3575.
doi: 10.3864/j.issn.0578-1752.2020.17.013
Zhang L L, Shi Q H, Gong B. Application of fulvic acid and phosphorus fertilizer on tomato growth, development, and phosphorus utilization in neutral and alkaline soil. Sci Agric Sin, 2020, 53: 3567-3575 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.17.013
[9] Braziene Z, Paltanavicius V, Avizienytė D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ Res, 2021, 195: 110824.
[10] Qin Y, Zhu H, Zhang M, Zhang H F, Xiang C, Li B C. GC-MS analysis of membrane-graded fulvic acid and its activity on promoting wheat seed germination. Molecules, 2016, 21: 1363.
[11] Nikoogoftar-Sedghi M, Rabiei V, Razavi F, Molaei S, Khadivi A. Fulvic acid foliar application: a novel approach enhancing antioxidant capacity and nutritional quality of pistachio (Pistacia vera L.). BMC Plant Biol, 2024, 24: 241.
doi: 10.1186/s12870-024-04974-0 pmid: 38570771
[12] 严国富, 吴亚芳, 汤洁. 促根剂对小麦种子发芽及幼苗生长的影响. 现代农业科技, 2023, (24): 1-3.
Yan G F, Wu Y F, Tang J. Effect of root promoting agents on wheat seed germination and seedling growth. Mod Agric Sci Technol, 2023, (24): 1-3 (in Chinese with English abstract).
[13] Guo Y L, Huang G M, Wei Z X, Feng T Y, Zhang K, Zhang M C, Li Z H, Zhou Y Y, Duan L S. Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agric Water Manag, 2023, 279: 108185.
[14] 王学江, 李峰, 迟艳, 孙林, 李浩铭, 王乐兵, 杨鲁光, 宋宛霖, 杨剑超, 刘正一. 褐藻寡糖对蕹菜生长量及生长速率的影响. 分子植物育种, 2022, 20: 4851-4857.
Wang X J, Li F, Chi Y, Sun L, Li H M, Wang L B, Yang L G, Song W L, Yang J C, Liu Z Y. The effect of brown algae oligosaccharides on the growth and growth rate of water spinach. Mol Plant Breed, 2022, 20: 4851-4857 (in Chinese with English abstract).
[15] 严国富, 杜朋潮, 李方敏, 汤洁. 褐藻酸寡糖对草莓光合特性及植株形态的影响. 现代农业科技, 2023, (15): 60-62.
Yan G F, Du P C, Li F M, Tang J. Effects of alginate oligosaccharides on photosynthetic characteristics and plant morphology of strawberry. Mod Agric Sci Technol, 2023, (15): 60-62 (in Chinese with English abstract).
[16] Li Z M, Duan S P, Lu B S, Yang C M, Ding H Q, Shen H. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in Citrus by regulating antioxidant system and related gene expression. Front Plant Sci, 2023, 13: 1108848.
[17] 张迷敏, 李静梅, 乔宇, 彭晴, Eromosele O, 陈旭, 谢越, 杲龙, 石波. 褐藻酸寡糖诱导下大豆营养成分的变化. 中国农业科学, 2015, 48: 3239-3248.
doi: 10.3864/j.issn.0578-1752.2015.16.013
Zhang M M, Li J H, Qiao Y, Peng Q, Ojokoh E, Chen X, Xie Y, Gao L, Shi B. Changes in nutritional properties of soybeans induced by alginate oligosaccharides. Sci Agric Sin, 2015, 48: 3239-3248 (in Chinese with English abstract).
[18] 谢锦, 韩立朴. 我国种子丸粒化研究现状及展望. 中国生态农业学报(中英文), 2024, 32: 605-615.
Xie J, Han L P. Current status and prospects of seed pelleting research in China. Chin J Eco-Agric, 2024, 32: 605-615 (in Chinese with English abstract).
[19] Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, Wang B, Zhou G S. Rapeseed Morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.
[20] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006 (in Chinese).
[21] 李合生. 现代植物生理学学习指南. 北京: 高等教育出版社, 2007.
Li H S. A Study Guide to Modern Plant Physiology. Beijing: Higher Education Press, 2007 (in Chinese).
[22] Rajjou L C, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565
[23] Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 62: 3289-3309.
doi: 10.1093/jxb/err030 pmid: 21430292
[24] 连艺佳, 刘瑞, 王嘉杰, 徐文伊, 晏迪, 王婷, 洪越, 王晔, 段留生, 李润枝. 低温对冬小麦萌发生理特性的影响. 北京农学院学报, 2023, 38(4): 1-7.
Lian Y J, Liu R, Wang J J, Xu W Y, Yan D, Wang T, Hong Y, Wang Y, Duan L S, Li R Z. Effects of low temperature on growth and physiological characteristics of winter wheat during germination. J Beijing Univ Agric, 2023, 38(4): 1-7 (in Chinese with English abstract).
[25] 张钰钦, 杨之帆, 李越, 李银水, 胡小加, 秦璐, 廖星. 外源海藻糖浸种对低温胁迫油菜种子萌发及幼苗生长的影响. 中国油料作物学报, 2022, 44: 376-384.
doi: 10.19802/j.issn.1007-9084.2020317
Zhang Y Q, Yang Z F, Li Y, Li Y S, Hu X J, Qin L, Liao X. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature. Chin J Oil Crop Sci, 2022, 44: 376-384 (in Chinese with English abstract).
[26] 张曼. H2O2浸种对低温胁迫下油菜种子萌发和幼苗生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2017.
Zhang M. Effects of Seed Soaking with Hydrogen Peroxide on Seed Germination and Seedling Growth in Rape under Chilling Stress. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[27] 李英浩, 刘景辉, 赵宝平, 米俊珍, 田露. 黄腐酸浸种对燕麦种子萌发及幼苗生长的影响. 种子, 2023, 42(2): 72-76.
Li Y H, Liu J H, Zhao B P, Mi J Z, Tian L. Effects of soaking seeds with fulvic acid on seed germination and seedling growth of oats. Seed, 2023, 42(2): 72-76 (in Chinese with English abstract).
[28] Zhang K K, Khan Z, Yu Q, Qu Z J, Liu J H, Luo T, Zhu K M, Bi J G, Hu L Y, Luo L J. Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants (Basel), 2022, 11: 2864.
[29] 韦娜. 叶面喷施黄腐酸对粮饲兼用型燕麦产量、品质及饲用价值的影响. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2023.
Wei N. Effect of Foliar Spraying Fulvic Acid on Yield, Quality and Feeding Value of Grain and Feed Oats. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2023 (in Chinese with English abstract).
[30] 孙冰, 张金梅, 刘朋宇, 张颖, 苏红玲, 王郡霞. 不同浓度褐藻寡糖对黄瓜生长、产量、品质与抗氧化酶及其基因表达的影响. 江苏农业科学, 2023, 51(13): 175-181.
Sun B, Zhang J M, Liu P Y, Zhang Y, Su H L, Wang J X. Impacts of different concentrations of brown algal oligosaccharides on growth, yield, quality and expression of antioxidant enzymes and their genes of cucumber. Jiangsu Agric Sci, 2023, 51(13): 175-181 (in Chinese with English abstract).
[31] 李防洲, 辛慧慧, 周广威, 李哲, 侯振安, 冶军. 水杨酸包衣剂包衣棉种对棉花幼苗抗寒性的影响. 棉花学报, 2015, 27: 589-594.
doi: 10.11963/issn.1002-7807.201506012
Li F Z, Xin H H, Zhou G W, Li Z, Hou Z A, Ye J. Effects of the seed film coating salicylic acid on the chilling tolerance of cotton seedlings. Cotton Sci, 2015, 27: 589-594 (in Chinese with English abstract).
doi: 10.11963/issn.1002-7807.201506012
[32] 曹宏, 王玺, 王晓丽, 张伟伟, 苏展, 杨玉廷. 低温逆境下氯化胆碱包衣对玉米种子萌发及幼苗生理生化指标的影响. 玉米科学, 2011, 19(3): 102-104.
Cao H, Wang X, Wang X L, Zhang W W, Su Z, Yang Y T. Effects of choline chloride seed-coating on seed germination and the physiological and biochemical guideline of seedling in maize under low temperature stress. J Maize Sci, 2011, 19(3): 102-104 (in Chinese with English abstract).
[33] Zhang Y H, Yin H, Zhao X M, Wang W X, Du Y G, He A L, Sun K G. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr Polym, 2014, 113: 446-454.
[34] 石朋飞. 风化煤制备可溶性腐植酸盐及腐植酸液体肥料研究. 郑州大学硕士学位论文, 河南郑州, 2016.
Shi P F. Study on Preparation of Soluble Humate and Humic Acid Liquid Fertilizer from Weathered Coal. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2016 (in Chinese with English abstract).
[35] 付宇航, 杨甜, 温瑞琦, 王香, 张显, 马建祥. 嫁接方式对低温胁迫下甜瓜幼苗光合特性及抗氧化系统的影响. 西北植物学报, 2024, 44: 1017-1027.
Fu Y H, Yang T, Wen R Q, Wang X, Zhang X, Ma J X. Effects of grafting patterns on photosynthetic characteristics and antioxidant system of Cucumis melo seedlings under low temperature stress. Acta Bot Boreali-Occident Sin, 2024, 44: 1017-1027 (in Chinese with English abstract).
[36] 孙燕, 刘韵, 王全九, 狄雅荷, 王春宏, 王建. 三种浸种剂对Na2SO4胁迫下小麦种子萌发期耐盐性的影响. 麦类作物学报, 2024, 44: 101-109.
Sun Y, Liu Y, Wang Q J, Di Y H, Wang C H, Wang J. Effects of different soaking agents on salt tolerance of wheat seeds during germination under Na2SO4 stress. J Triticeae Crops, 2024, 44: 101-109 (in Chinese with English abstract).
[37] 朱珊珊. 干旱胁迫下黄腐酸调控燕麦光合能力与抗旱增产机制. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2023.
Zhu S S. Regulation of Photosynthetic Capacity and Drought Resistance and Yield-increasing Mechanism of Oat by Fulvic Acid under Drought Stress. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).
[38] 刘瑞志, 江晓路, 管华诗. 褐藻寡糖激发子诱导烟草抗低温作用研究. 中国海洋大学学报(自然科学版), 2009, 39(2): 243-248.
Liu R Z, Jiang X L, Guan H S. Effects of alginate-derived oligosaccharide on the low temperature resistance of tobacco leaves. Period Ocean Univ China, 2009, 39(2): 243-248 (in Chinese with English abstract).
[39] Lin D, Yan R Y, Xing M Y, Liao S Y, Chen J Y, Gan Z Y. Fucoidan treatment alleviates chilling injury in cucumber by regulating ROS homeostasis and energy metabolism. Front Plant Sci, 2022, 13: 1107687.
[40] 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响. 浙江农业学报, 2022, 34: 1935-1944.
doi: 10.3969/j.issn.1004-1524.2022.09.12
Ding D X, Li N H, Li J, Tang C N, Wang C, Niu T H, Yang Y, Yang H T, Xie J M. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress. Acta Agric Zhejiangensis, 2022, 34: 1935-1944 (in Chinese with English abstract).
[41] 何淑萍, 王娟, 王托和, 范惠玲, 缪纯庆. 黄腐酸处理对甘蓝型春油菜生理指标的影响. 农业科技与信息, 2021, (3): 59-62.
He S P, Wang J, Wang T H, Fan H L, Miao C Q. Effects of fulvic acid treatment on physiological indexes of spring rape in Brassica napus L. Agric Sci Technol Inf, 2021, (3): 59-62 (in Chinese).
[42] 余贝. 盐胁迫下SNRK1a对水稻生理机制的影响及调控措施研究. 吉林农业大学硕士学位论文, 吉林长春, 2023.
Yu B. Effects of SNRK1a on Physiological Mechanism of Rice under Salt Stress and Its Control Measures. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2023 (in Chinese with English abstract).
[43] Liu H, Zhang Y H, Yin H, Wang W X, Zhao X M, Du Y G. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem, 2013, 62: 33-40.
[44] Miransari M, Smith D L. Plant hormones and seed germination. Environ Exp Bot, 2014, 99: 110-121.
[45] 李娜, 李菲, 李凤鸣, 丛子健. 黄腐酸对夏玉米水分利用效率及生理指标的影响. 水土保持应用技术, 2021, (2): 1-3.
Li N, Li F, Li F M, Cong Z J. Effects of fulvic acid on water use efficiency and physiological indexes of summer maize. Technol Soil Water Conserv, 2021, (2): 1-3 (in Chinese).
[46] Silverman F P, Assiamah A A, Bush D S. Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta, 1998, 205: 23-31.
[1] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[2] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[3] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[4] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[5] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[6] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展[J]. 作物学报, 2025, 51(2): 287-300.
[7] 苏晴芳, 孙小钊, 林杨, 付艳苹, 程家森, 谢甲涛, 姜道宏, 陈桃. 嗜线虫沙雷氏菌Serratia nematodiphila TG10增强油菜耐盐碱能力[J]. 作物学报, 2025, 51(2): 358-369.
[8] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[9] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[10] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[11] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[12] 张琪祺, 陈杰昌, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 赵思明, 贾才华, 周广生. 高密度直播对油菜冷榨菜籽油品质的影响[J]. 作物学报, 2024, 50(9): 2358-2370.
[13] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[14] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[15] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!