作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1480-1488.doi: 10.3724/SP.J.1006.2025.42049
凤舞剑1,*(), 冼晓青2, 张新钵1, 曹丹1, 强承魁1
FENG Wu-Jian1,*(), XIAN Xiao-Qing2, ZHANG Xin-Bo1, CAO Dan1, QIANG Cheng-Kui1
摘要:
效应蛋白是植物病原菌克服植物免疫的重要武器, 病原菌在侵染初期与植物的斗争中会分泌不同类型的效应子。为了鉴定病原菌关键的经典效应蛋白和与植物互作的靶基因, 拟通过生物信息学和结构生物学建立经典效应蛋白和靶标蛋白的鉴定方案。以稻瘟病菌和水稻为对象, 运用SignalP、TMHMM、PredGPI、PSORT和EffectorP在稻瘟病菌中共鉴定到535个效应蛋白, 主要分为5类。利用稻瘟病菌-水稻互作转录组共鉴定到282个关键效应蛋白, 并构建了稻瘟病菌-水稻的早期效应蛋白-植物互作的共表达网络。利用AlphaFold3预测发现水稻Os06t0633800和Os03t0114400蛋白可能分别为稻瘟病菌MGG_08817和MGG_03865的潜在靶标。利用荧光素酶互作验证发现MGG_08817与Os06t0633800、MGG_03865与Os03t0114400在烟草中存在互作。病原菌效应蛋白和靶标蛋白的快速筛选和鉴定对于植物病害的防治具有重要意义, 该研究成果将有助于鉴定和挖掘重要的病原菌效应蛋白和植物靶基因, 为植物病原菌互作的深入研究提供理论依据, 为植物病害的绿色防控奠定基础。
[1] | Ngou B P M, Ding P T, Jones J D G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell, 2022, 34: 1447-1478. |
[2] | Yuan M H, Jiang Z Y, Bi G Z, Nomura K, Liu M H, Wang Y P, Cai B Y, Zhou J M, He S Y, Xin X F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592: 105-109. |
[3] |
Shi X T, Xie X, Guo Y W, Zhang J Q, Gong Z W, Zhang K, Mei J, Xia X Y, Xia H X, Ning N, et al. A fungal core effector exploits the OsPUX8B.2-OsCDC48-6 module to suppress plant immunity. Nat Commun, 2024, 15: 2559.
doi: 10.1038/s41467-024-46903-7 pmid: 38519521 |
[4] | Pan Q L, Zhang Y Y, Yang Y, Qiao Y X, Qian Y R, Wang J M, Wang X J, Kang Z S, Liu J.The Puccinia striiformis effector Pst11215 manipulates mitochondria to suppress host immunity by promoting TaVDIP1-mediated ubiquitination of TaVDAC1 New Phytol, 2024, 244: 1961-1978. |
[5] | Qi P P, Zhang D, Zhang Y, Zhu W T, Du X Y, Ma X S, Xiao C F, Lin Y, Xie J T, Cheng J S, et al. Ubiquitination and degradation of plant helper NLR by the Ralstonia solanacearum effector RipV2 overcome tomato bacterial wilt resistance. Cell Rep, 2024, 43: 114596. |
[6] | Liu M X, Wang F F, He B, Hu J X, Dai Y, Chen W Z, Yi M X, Zhang H F, Ye Y H, Cui Z L, et al. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast. Nat Plants, 2024, 10: 618-632. |
[7] | Han R, Zhu T T, Kong Z W, Zhang X, Wang D L, Liu J F. Understanding and manipulating the recognition of necrosis-inducing secreted protein 1 (NIS1) by BRI1-associated receptor kinase 1 (BAK1). Int J Biol Macromol, 2024, 278: 134821. |
[8] | Xu N, Luo X M, Wu W, Xing Y Y, Liang Y B, Liu Y Z, Zou H S, Wei H L, Liu J.A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis. Mol Plant, 2020, 13: 1499-1512. |
[9] | Liu Y, Zhang X, Yuan G X, Wang D L, Zheng Y Y, Ma M Q, Guo L W, Bhadauria V, Peng Y L, Liu J F. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc Natl Acad Sci USA, 2021, 118: e2110751118. |
[10] | Hadar N, Weintraub G, Gudes E, Dolev S, Birk O S. GeniePool: genomic database with corresponding annotated samples based on a cloud data lake architecture. Database, 2023, 2023: baad043. |
[11] | Jeon J, Lee G W, Kim K T, Park S Y, Kim S, Kwon S, Huh A, Chung H, Lee D Y, Kim C Y, et al. Transcriptome profiling of the rice blast fungus Magnaporthe oryzae and its host Oryza sativa during infection. Mol Plant Microbe Interact, 2020, 33: 141-144. |
[12] | Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890. |
[13] | Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915. |
[14] |
Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[15] |
Teufel F, Almagro Armenteros J J, Johansen A R, Gíslason M H, Pihl S I, Tsirigos K D, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol, 2022, 40: 1023-1025.
doi: 10.1038/s41587-021-01156-3 pmid: 34980915 |
[16] |
Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567-580.
doi: 10.1006/jmbi.2000.4315 pmid: 11152613 |
[17] | Pierleoni A, Martelli P L, Casadio R.PredGPI: a GPI-anchor predictor. BMC Bioinf, 2008, 9: 392. |
[18] | Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-collier C J, Nakai K T.WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587. |
[19] | Sperschneider J, Dodds P N. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol Plant Microbe Interact, 2022, 35: 146-156. |
[20] |
Cantalapiedra C P, Hernández-Plaza A, Letunic I, Bork P, Huerta-cepas J. EggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol, 2021, 38: 5825-5829.
doi: 10.1093/molbev/msab293 pmid: 34597405 |
[21] |
Sepulveda J L. Using R and bioconductor in clinical genomics and transcriptomics. J Mol Diagn, 2020, 22: 3-20.
doi: S1525-1578(19)30397-6 pmid: 31605800 |
[22] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N D, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[23] | Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583-589. |
[24] | Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard A J, Bambrick J, et al.Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500. |
[25] |
Chen H M, Zou Y, Shang Y L, Lin H Q, Wang Y J, Cai R, Tang X Y, Zhou J M. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol, 2008, 146: 368-376.
doi: 10.1104/pp.107.111740 pmid: 18065554 |
[26] |
杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选. 作物学报, 2023, 49: 597-607.
doi: 10.3724/SP.J.1006.2023.22014 |
Yang Y, Sun Q, Xing X X, Zhang H T, Zhao Z C. Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.). Acta Agron Sin, 2023, 49: 597-607 (in Chinese with English abstract). | |
[27] |
Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, et al. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468 |
[28] | Song T Q, Ma Z C, Shen D Y, Li Q, Li W L, Su L M, Ye T Y, Zhang M X, Wang Y C, Dou D L. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters. PLoS Pathog, 2015, 11: e1005348. |
[29] | Qin J, Wang K L, Sun L F, Xing H Y, Wang S, Li L, Chen S, Guo H S, Zhang J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife, 2018, 7: e34902. |
[30] |
Boevink P C, McLellan H, Gilroy E M, Naqvi S, He Q, Yang L N, Wang X D, Turnbull D, Armstrong M R, Tian Z D, et al. Oomycetes seek help from the plant: Phytophthora infestans effectors target host susceptibility factors. Mol Plant, 2016, 9: 636-638.
doi: S1674-2052(16)30027-2 pmid: 27095376 |
[31] | 曹言勇, 张立立, 李慧敏, 韩胜博, 侯梦薇, 段灿星, 施艳, 张新友. 玉米茎腐病致病菌全基因组分泌蛋白预测与分析. 玉米科学, 2024, 32(4): 110-118. |
Cao Y Y, Zhang L L, Li H M, Han H B, Hou M W, Duan C X, Shi Y, Zhang X Y. Genome-wide prediction and analysis of the secreted proteins from the pathogenic fungus causing maize stalk rot. J Maize Sci, 2024, 32(4): 110-118 (in Chinese with English abstract). | |
[32] |
吴佳椰露, 傅艺炜, 包崇来, 严亚琴. 茄腐镰孢菌分泌蛋白与效应子的预测分析. 植物病理学报, 2025, 55: 32-46.
doi: 10.13926/j.cnki.apps.001646 |
Wu J Y L, Fu Y W, Bao C L, Yan Y Q.Genome-wide prediction and analysis of secreted proteins and effectors in Fusarium solani. Acta Phytopathol Sic, 2025, 55: 32-46 (in Chinese with English abstract). | |
[33] | Yan X, Tang B Z, Ryder L S, MacLean D, Were V M, Eseola A B, Cruz-Mireles M N, Ma W B, Foster A J, Osés-Ruiz M, et al. The transcriptional landscape of plant infection by the rice blast fungus Magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. Plant Cell, 2023, 35: 1360-1385. |
[34] | Zhang Y Q, Yang Z R, Yang Y, Han A P, Rehneke L, Ding L W, Wei Y S, Liu Z M, Meng Y L, Schäfer P, et al. A symbiont fungal effector relocalizes a plastidic oxidoreductase to nuclei to induce resistance to pathogens and salt stress. Curr Biol, 2024, 34: 2957-2971. |
[35] | Wang X, Yan F, Ma G J, Li A X, Liu L J. The diverse functions of Pseudomonas syringae syringae van Hall effectors in regulating the plant immune response. Phytopathol Res, 2023, 5: 63. |
[36] | Zhou Y R, Zhao J, Yang L, Bi R Q, Qin Z T, Sun P, Li R J, Zhao M F, Wang Y, Chen G, et al. Doxorubicin inhibits phosphatidylserine decarboxylase and confers broad-spectrum antifungal activity. New Phytol, 2023, 239: 255-270. |
[37] |
Homma F, Huang J, van der Hoorn R A L. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat Commun, 2023, 14: 6040.
doi: 10.1038/s41467-023-41721-9 pmid: 37758696 |
[1] | 沈文杰, 陈晴晴, 胡逸群, 张爱芳, 张曼玉. 安徽省不同生理小种稻瘟病菌对稻瘟灵的敏感性研究[J]. 作物学报, 2025, 51(5): 1338-1346. |
[2] | 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649. |
[3] | 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236. |
[4] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[5] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813. |
[6] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[7] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[8] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[9] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[10] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[11] | 孙兰兰, 麻荣慧, 薛飞, 杨慕菡, 徐洪乐, 苏旺苍, 鲁传涛, 吴仁海. 玉米GST31基因的克隆与表达分析[J]. 作物学报, 2023, 49(10): 2717-2726. |
[12] | 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45. |
[13] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
|