欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2717-2726.doi: 10.3724/SP.J.1006.2023.23080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米GST31基因的克隆与表达分析

孙兰兰(), 麻荣慧, 薛飞, 杨慕菡, 徐洪乐, 苏旺苍, 鲁传涛, 吴仁海()   

  1. 河南省农业科学院植物保护研究所 / 河南省农作物病虫害防治重点实验室, 河南郑州 450002
  • 收稿日期:2022-12-12 接受日期:2023-02-21 出版日期:2023-10-12 网络出版日期:2023-03-02
  • 通讯作者: 吴仁海, E-mail: renhai.wu@163.com
  • 作者简介:E-mail: sll30711034@163.com
  • 基金资助:
    河南省自然科学基金青年科学基金项目(212300410171);河南省农业科学院自主选题项目(2022ZC36);河南省科技研发计划联合基金项目(222301420109)

Cloning and the relative expression pattern of GST31 gene in maize

SUN Lan-Lan(), MA Rong-Hui, XUE Fei, YANG Mu-Han, XU Hong-Le, SU Wang-Cang, LU Chuan-Tao, WU Ren-Hai()   

  1. Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-12-12 Accepted:2023-02-21 Published:2023-10-12 Published online:2023-03-02
  • Contact: E-mail: renhai.wu@163.com
  • Supported by:
    Science Foundation of Henan Province, China(212300410171);Independent Topic Selection Project of Henan Academy of Agricultural Sciences(2022ZC36);Joint Fund for Scientific and Technological Research and Development of Henan(222301420109)

摘要:

为探究ZmGST31基因的序列特征及除草剂与安全剂对基因表达模式的影响, 本研究以玉米品种“郑单958”为试验材料, 利用反转录PCR (RT-PCR)技术克隆该基因, 分析其核苷酸和编码蛋白序列特性, 并利用实时荧光定量PCR (qRT-PCR)技术研究其在玉米根茎叶以及除草剂烟嘧磺隆(nicosulfuron, NS)和安全剂双苯噁唑酸(isoxadifen-ethyl, IE)单施和共施24 h、48 h的表达情况。结果显示: ZmGST31编码序列(CDS)长为765 bp, 可编码一个分子式为C1276H2021N331O353S4, 氨基酸大小为254个氨基酸, 分子量为27.78 kD, 等电点为6.60的稳定疏水性蛋白。该蛋白主要定位于细胞质, 且无信号肽和跨膜结构, 含有保守的GST_C_Tau结构域和GST_N_Tau结构域, 属于Tau亚家族, 与扫帚黍(Dichanthelium oligosanthes) GSTU17蛋白具有较高的相似性。蛋白互作预测结果显示, ZmGST31与10个蛋白存在互作, 其中包括2个谷胱甘肽合成酶(glutathione synthetase)和5个谷胱甘肽过氧化物酶(glutathione peroxidase)。ZmGST31启动子区含有大量的光响应和多种激素响应相关元件。qRT-PCR结果显示ZmGST31在玉米苗期不同部位中均有表达, 其中根中表达量最高, 其次是叶片, 茎最低。除草剂烟嘧磺隆和安全剂双苯噁唑酸处理均能诱导ZmGST31基因在玉米的地上部分中表达, 其诱导作用在处理24 h时最强。本研究表明, ZmGST31的表达受除草剂烟嘧磺隆与安全剂双苯噁唑酸调控, 可能在玉米除草剂毒性降解或安全剂介导的除草剂毒性降解中发挥重要作用。

关键词: 玉米, ZmGST31, 生物信息学分析, 表达模式

Abstract:

To investigate the sequence characteristics of the ZmGST31 gene and the relative expression pattern under herbicide and safener application, ZmGST31 gene was cloned from maize variety ‘Zhengdan 958' by using Reverse Transcription PCR (RT-PCR). A series of bioinformatics analyses were performed subsequently to reveal its nucleotide and coding protein sequence characteristics. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study its relative expression level in root, stem, and leaf with the application of Nicosulfuron (NS) and Isoxadifen-Ethyl (IE) for 24 hours and 48 hours. The results showed that the coding sequence (CDS) of ZmGST31 was 765 bp, which encoded an stable hydrophobic protein with molecular formula of C1276H2021N331O353S4, amino acid size of 254 aa, molecular weight of 27.78 kD, and isoelectric point of 6.60. The protein was mainly localized in the cytoplasm and had no signal peptide and transmembrane structure. Based on the conserved GST_C_Tau and GST_N_Tau structural domain, it was suggested to be a member of the Tau subfamily. ZmGST31 had higher homology with Dichanthelium oligosanthes GSTU17 protein. Protein-protein interaction prediction result showed that ZmGST31 could interact with ten proteins, including two glutathione synthetases and five Glutathione peroxidase proteins. The promoter region of ZmGST31 containd a large number of Cis-acting elements such as light response and hormone response. qRT-PCR results revealed that ZmGST31 was expressed in different parts of maize seedlings, with the highest expression in roots, followed by leaves, and stems. The relative expression of ZmGST31 gene in the aboveground part of maize could be induced by the nicosulfuron and isoxadifen-ethyl, the induction effect was the strongest at 24 hours. In conclusion, the relative expression level of ZmGST31 was regulated by herbicide Nicosulfuron and safener Isoxadifen-Ethyl and might play an important role in herbicide toxicity degradation or safener-mediated herbicide toxicity degradation in maize.

Key words: Zea mays L., ZmGST31, bioinformatics analysis, the relative expression pattern

图1

ZmGST31 cDNA扩增产物电泳检测结果 M: DL2000标记。"

图2

ZmGST31蛋白二级结构(A)与三级结构(B) 蓝色h: α-螺旋; 绿色t: β-折叠; 橙色c: 无规则卷曲; 红色e: 延伸链。"

图3

ZmGST31保守结构域"

表1

ZmGST31蛋白基序"

基序名称
Motif name
基序序列
Motif sequence
E
E-value
宽度
Width
位点
Location
基序名称
Motif name
基序序列
Motif sequence
E
E-value
宽度
Width
位点
Location
Motif 1 RFWAQY
RLCAHP
1.4e+001 6 120-125
218-223
Motif 10 DAIPDA
DAHARA
3.6e+003 6 227-232
112-117
Motif 2 FGGDSVGY
FVEFSVTY
1.3e+002 8 173-180
235-242
Motif 11 LKGTDD
LKGVEF
4.2e+003 6 137-142
48-53
Motif 3 HHGKPIS
SFSKPIN
1.8e+002 7 82-88
244-250
Motif 12 RVIGLW
KIAGVT
8.0e+003 6 29-34
197-202
Motif 4 PWAIRI
PFVIRV
4.1e+002 6 131-136
37-42
Motif 13 EEVVGR
SELLLR
8.0e+003 6 57-62
64-69
Motif 5 GMEQAA
KMSEAA
4.3e+002 6 144-149
22-27
Motif 14 PAFLPV
TVVLPV
9.8e+003 6 106-111
9-14
Motif 6 QYIDEVW
QLLEEAF
1.0e+003 7 95-101
157-163
Motif 15 GWVKAV
LLDKAK
1.9e+004 6 190-195
203-208
Motif 7 MSRLTTT
DIALVSH
2.1e+003 7 1-7
182-188
Motif 16 ELSELG
ESLIIV
2.4e+004 6 15-20
89-94
Motif 8 PNLVAW
SNPVHK
3.8e+002 6 210-215
70-75
Motif 17 SFSKPI
KIPVLL
3.1e+004 6 244-249
76-81
Motif 9 AQLSQG
GQLSAA
3.3e+003 6 164-169
150-155

图4

ZmGST31蛋白基序LOGO"

图5

ZmGST31蛋白互作网络模型"

图6

GST蛋白系统进化树"

表2

ZmGST31启动子顺式作用元件分析"

元件
Motif
数量
Number
功能
Function
TATA-box 77 核心启动子元件 Core promoter element
CAAT-box 14 核心启动子元件 Core promoter element
CGTCA-motif 8 茉莉酸甲酯响应 MeJA-responsiveness
CAT-box 3 分生组织表达 Meristem expression
ATCT-motif 3 光反应 Light responsiveness
TGA-element 3 生长素响应元件 Auxin-responsive element
ARE 2 厌氧诱导 Anaerobic induction
GA-motif 2 光响应元件 Light responsive element
ABRE 2 脱落酸响应 Abscisic acid responsiveness
GC-motif 1 缺氧特异性诱导 Anoxic specific inducibility
CCAAT-box 1 MYBHv1结合位点 MYBHv1 binding site
GA-motif 1 光反应元件 Light responsive element
AT-rich element 1 富含AT的DNA结合蛋白结合位点 Binding site of AT-rich DNA binding protein
ACE 1 光反应 Light responsiveness
CAT-box 1 顺式作用调控元件 Cis-acting regulatory element
GCN4_motif 1 胚乳发育 Endosperm expression
MSA-like 1 细胞周期调控 Cell cycle regulation

图7

不同组织部位与不同处理下ZmGST31相对表达量 A: 根、茎、叶中ZmGST31相对表达量。B: 对照组(CK)处理0 h、24 h和48 h ZmGST31相对表达量。C: 对照组(CK)、双苯噁唑酸(IE)、烟嘧磺隆(NS)、双苯噁唑酸+烟嘧磺隆(IE+NS)处理24 h ZmGST31相对表达量。D: 对照组(CK)、双苯噁唑酸(IE)、烟嘧磺隆(NS)、双苯噁唑酸+烟嘧磺隆(IE+NS)处理48 h ZmGST31相对表达量。所有数据显示为3个重复的平均值±标准偏差, 各栏上方不同的小写字母代表了不同处理间在P < 0.05时的差异显著。"

[1] Dixon D P, Cummins L, Cole D J, Edwards R. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol, 1998, 1: 258-266.
doi: 10.1016/s1369-5266(98)80114-3 pmid: 10066594
[2] Nutricati E, Miceli A, Blando F, De Bellis L. Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep, 2006, 25: 997-1005.
doi: 10.1007/s00299-006-0146-1 pmid: 16538523
[3] Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277: 30859-30869.
doi: 10.1074/jbc.M202919200
[4] Edeards R, Dixon D P. Gluthione Transferases and Gamma- glutamyl Transpeptidases. USA: Academic Press, 2005. pp 169-186.
[5] Liu Y J, Han X M, Ren L L, Yang H L, Zeng Q Y. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol, 2013, 161: 773-786.
doi: 10.1104/pp.112.205815 pmid: 23188805
[6] Lallement P A, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol, 2014, 5: 192.
[7] Cottingham C K, Hatzios K K, Meredith S. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid. Zeitchrift Naturforsch C J Biosci, 1998, 53: 973-979.
[8] Shimabukuro R H, Frear D S, Swanson H R, Walsh W C. Glutathione conjugation. Plant Physiol, 1971, 47: 10-14.
pmid: 5543779
[9] 郭玉莲, 陶波, 郑铁军, 李宝英, 翟喜海, 潘亚清. 植物谷胱甘肽S-转移酶(GSTs)及除草剂解毒剂的诱导作用. 东北农业大学学报, 2008, 39(7): 136-139.
Guo Y L, Tao B, Zheng T J, Li B Y, Zhai X H, Pan Y Q. Inducement action of plant GSTs and herbicides antidotes. J Northeast Agric Univ, 2008, 39(7): 136-139 (in Chinese with English abstract).
[10] Timmerman K P. Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiol Plant, 1989, 77: 465-471.
[11] Jepson I, Lay V J, Holt D C, Bright S W, Greenland A J. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol Biol, 1994, 26: 1855-1866.
pmid: 7858222
[12] Mueller L A, Goodman C D, Silady R A, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000, 123: 1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372
[13] Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436
[14] Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634.
doi: 10.1093/jxb/ern217
[15] Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843.
doi: 10.1007/s00299-015-1924-4
[16] Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, Zhang Z Y, Wu S J, Chen X S. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40.
doi: 10.1038/s41438-019-0118-6
[17] Chan C, Lam H M. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol, 2014, 55: 570-579.
doi: 10.1093/pcp/pct201 pmid: 24399237
[18] 彭学岗. 玉米田革命性杂草解决方案. 湖北植保. 2014, (3): 63-64.
Peng X G. Revolutionary weed solutions for corn fields. Hubei Plant Prot, 2014, (3): 63-64. (in Chinese)
[19] 浦军, 黄吉美, 扬眉. 不同除草剂对玉米田的防效及产量影响. 特种经济动植物, 2022, 25(10): 36-37.
Pu J, Huang J M, Yang M. Effectiveness of different herbicides on corn fields and yield. Special Econom Anim Plant, 2022, 25(10): 36-37. (in Chinese)
[20] Liu X M, Bi B, Xu X, Li B H, Tian S G, Wang J P, Zhang H, Wang G Q, Han Y J, McElroy J S. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theor Appl Genet, 2019, 132: 1351-1361.
doi: 10.1007/s00122-019-03282-8
[21] Williams B J, Harvey R G. Effect of nicosulfuron timing on wild-proso millet (Panicum miliaceum) control in sweet corn (Zea mays). Weed Technol, 2000, 14: 377-382.
doi: 10.1614/0890-037X(2000)014[0377:EONTOW]2.0.CO;2
[22] Ferguson J E, Rhodes A M, Dickinson D B. The genetic of sugary enhancer (se), an independent modifier of sweet corn (su). J Hered, 1978, 69: 377-380.
doi: 10.1093/oxfordjournals.jhered.a108976
[23] Davies J, Caseley J C. Herbicide safeners: a review. Pest Sci, 1999, 55: 1043-1058.
doi: 10.1002/(SICI)1096-9063(199911)55:11&lt;&gt;1.0.CO;2-4
[24] Hatzios K K, Burgos N. Metabolism-based herbicide resistance: regulationby safeners. Weed Sci, 2004, 52: 454-467.
doi: 10.1614/P2002-168C
[25] Abu-Qare A W, Duncan H J. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action. Chemosphere, 2002, 48: 965-974.
pmid: 12222792
[26] Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Herbicide safeners increase waxy maize tolerance to nicosulfuron and affect weed control. J Agric Sci Technol, 2016, 6: 386-393.
[27] Sun L L, Wu R H, Su W C, Gao Z G, Lu C T. Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids. PLoS One, 2017, 12: e0173502.
doi: 10.1371/journal.pone.0173502
[28] Sun L L, Xu H L, Su W C, Xue F, An S H, Lu C T, Wu R H. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Plant Physiol Biochem, 2018, 129: 101-108.
doi: 10.1016/j.plaphy.2018.05.025
[29] Schulte W, Köcher H. Tembotrione and combination partner isoxadifen-ethyl-mode of herbicidal action. Bayer Crop Sci J, 2009, 62: 35-52.
[30] Ma R H, Tian N, Wang J S, Fan M L, Wang B, Qu P Y, Xu S Y, Xu Y B, Cheng C Z, Lyu P T. Genome-wide identification and characterization of banana Ca2+-ATPase genes and expression analysis under different concentrations of Ca2+ treatments. Int J Mol Sci, 2022, 23: 11914.
doi: 10.3390/ijms231911914
[31] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[32] 姜婷, 苏乔, 安利佳. 多重胁迫下玉米实时定量PCR内参基因的筛选与验证. 植物生理学报, 2015, 51: 1457-1464.
Jiang T, Su Q, An L J. Screening and validation of reference genes of qPCR in maize under multiple stresses. Plant Physiol J, 2015, 51: 1457-1464. (in Chinese with English abstract)
[33] Riechers D E, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol, 2010, 153: 3-13.
doi: 10.1104/pp.110.153601 pmid: 20237021
[34] Delye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci, 2013, 69: 176-187.
doi: 10.1002/ps.3318 pmid: 22614948
[35] Jugulam M, Shyam C. Non-target-site resistance to herbicides: recent developments. Plants, 2019, 8: 417.
doi: 10.3390/plants8100417
[36] Dixon D P, Edwards R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem, 2009, 284: 21249-21256.
doi: 10.1074/jbc.M109.020107 pmid: 19520850
[37] Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson C G, Weber A P, Olsen L J, Hu J P. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol, 2009, 150: 125-143.
doi: 10.1104/pp.109.137703 pmid: 19329564
[38] Basantani, M K, Srivastava A. Plant glutathione transferases: a decade falls short. Can J Bot, 2007, 85: 443-456.
doi: 10.1139/B07-033
[39] Rossini L, Frova C, Enrico Pè M, Mizzi L, Gorla M S. Alachlor regulation of maize glutathione S-transferase genes. Pest Biochem Physiol, 1998, 60: 205-211.
doi: 10.1006/pest.1998.2338
[40] Andrews C J, Cummins I, Skipsey M, Grundy N M, Jepson I, Townson J, Edwards R. Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.), selective enhancement by herbicides and herbicide safeners. Pest Biochem Phys, 2005, 82: 205-219.
doi: 10.1016/j.pestbp.2004.11.009
[41] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004, 271: 511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[4] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[5] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[6] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[7] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[8] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[9] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[10] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[11] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[12] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[13] 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517.
[14] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[15] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .