作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1514-1525.doi: 10.3724/SP.J.1006.2025.41076
吴美娟1,2(), 张寅辉2, 李元昊2, 刘海霞2, 黄以琳2, 李甜2, 刘红霞2, 张学勇2, 郝晨阳1,2,*(
), 郭杰1,*(
), 侯健2,*(
)
WU Mei-Juan1,2(), ZHANG Yin-Hui2, LI Yuan-Hao2, LIU Hai-Xia2, HUANG Yi-Lin2, LI Tian2, LIU Hong-Xia2, ZHANG Xue-Yong2, HAO Chen-Yang1,2,*(
), GUO Jie1,*(
), HOU Jian2,*(
)
摘要:
小麦是重要的粮食作物之一, 持续提升其产量是育种的重要目标。提高粒重可以有效提高小麦单产, 而小麦籽粒的主要成分是淀粉。为全面解析淀粉合成通路关键酶基因TaSUS2对籽粒淀粉合成的作用, 本研究从小麦基因组中扩增了TaSUS2的全长cDNA序列, 并在科农199中对TaSUS2进行基因编辑, 获得2种纯合二突材料(KO-1、KO-2)和1种纯合的三突材料(KO-3)。转基因材料表型鉴定发现, 与野生型相比, TaSUS2的种子出现明显的皱缩, 粒重显著下降, 且籽粒胚乳中总淀粉含量、直链淀粉含量、绝对淀粉含量和A型淀粉的粒径也显著降低, 表明TaSUS2影响粒重和籽粒中的淀粉合成。转录组分析发现, TaSUS2-KO-3花后21 d的籽粒中淀粉合成通路上的多个主要合成酶基因上调表达。开发TaSUS2-2A-CAPS标记并鉴定了145份重测序材料, 发现TaSUS2影响淀粉含量、湿面筋含量、蛋白质含量及沉降值等品质性状, TaSUS2-2A-Hap-G是影响品质性状的优异单倍型。研究结果为阐析TaSUS2的生物学功能奠定了基础, 也为未来小麦的高产优质分子育种提供了基因资源。
[1] | Gao Y J, Li Y S, Xia W Y, Dai M Q, Dai Y, Wang Y G, Ma H G, Ma H X. The regulation of grain weight in wheat. Seed Biol, 2023, 2: 17. |
[2] | Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, et al. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 1799-1814. |
[3] | Housley T L, Kirleis A W, Ohm H W, Patterson F L. An evaluation of seed growth in soft red winter wheat. Can J Plant Sci, 1981, 61: 525-534. |
[4] |
Dale E M, Housley T L. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiol, 1986, 82: 7-10.
doi: 10.1104/pp.82.1.7 pmid: 16665025 |
[5] |
Lu H F, Hu Y Y, Wang C Y, Liu W X, Ma G, Han Q X, Ma D Y. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Front Plant Sci, 2019, 10: 1414.
doi: 10.3389/fpls.2019.01414 pmid: 31798603 |
[6] | Barron C, Surget A, Rouau X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci, 2007, 45: 88-96. |
[7] | Zuo J R, Li J Y. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev, 2014, 1: 253-276. |
[8] | International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788. |
[9] |
Kumar R, Mukherjee S, Ayele B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review. Biotechnol Adv, 2018, 36: 954-967.
doi: S0734-9750(18)30036-3 pmid: 29499342 |
[10] | Deol K K, Mukherjee S, Gao F, Brûlé-Babel A, Stasolla C, Ayele B T. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol, 2013, 13: 181. |
[11] |
Beckles D M, Smith A M, Rees T A. A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol, 2001, 125: 818-827.
doi: 10.1104/pp.125.2.818 pmid: 11161039 |
[12] |
Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328: 307-317.
doi: 10.1016/s0022-2836(03)00307-3 pmid: 12691742 |
[13] | Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827-831. |
[14] |
Sun J, Loboda T, Sung S J, Black C C. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol, 1992, 98: 1163-1169.
doi: 10.1104/pp.98.3.1163 pmid: 16668741 |
[15] |
Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J, 1995, 7: 97-107.
doi: 10.1046/j.1365-313x.1995.07010097.x pmid: 7894514 |
[16] | Chevalier P, Lingle S E. Sugar metabolism in developing kernels of wheat and barley. Crop Sci, 1983, 23: 272-277. |
[17] |
Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet, 1976, 14: 1041-1055.
doi: 10.1007/BF00485135 pmid: 1016220 |
[18] |
Tang G Q, Sturm A.A Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol, 1999, 41: 465-479.
doi: 10.1023/a:1006327606696 pmid: 10608657 |
[19] | Fan C F, Wang G Y, Wang Y M, Zhang R, Wang Y T, Feng S Q, Luo K M, Peng L C. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. Int J Mol Sci, 2019, 20: 4971. |
[20] | Yao D Y, Gonzales-Vigil E, Mansfield S D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem J Exp Bot, 2020, 71: 1858-1869. |
[21] |
Chandran D, Sharopova N, VandenBosch K A, Garvin D F, Samac D A. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol, 2008, 8: 89.
doi: 10.1186/1471-2229-8-89 pmid: 18713465 |
[22] |
Ahmed I M, Nadira U A, Cao F B, He X Y, Zhang G P, Wu F B. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243: 973-985.
doi: 10.1007/s00425-015-2442-x pmid: 26748913 |
[23] | Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61. |
[24] | Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, et al. The wheat sucrose synthase gene TaSus1 is a determinant of grain number per spike. Crop J, 2024, 12: 295-300. |
[25] |
Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918-1929.
doi: 10.1104/pp.113.232454 pmid: 24402050 |
[26] |
Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13: 1733-1751.
doi: 10.1016/j.molp.2020.09.001 pmid: 32896642 |
[27] |
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Elaine Barclay J, Fahy B, Hartley M, Warren F J, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol, 2021, 230: 2371-2386.
doi: 10.1111/nph.17342 pmid: 33714222 |
[28] | Zhang Z F, Tan J X, Chen Y T, Sun Z, Yan X, Ouyang J X, Li S B, Wang X. New fructokinase, OsFRK3, regulates starch accumulation and grain filling in rice. J Agric Food Chem, 2023, 71: 1056-1066. |
[29] |
Fahy B, Gonzalez O, Savva G M, Ahn-Jarvis J H, Warren F J, Dunn J, Lovegrove A, Hazard B A. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Sci Rep, 2022, 12: 10806.
doi: 10.1038/s41598-022-14995-0 pmid: 35752653 |
[30] |
Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H X, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J Exp Bot, 2019, 70: 1497-1511.
doi: 10.1093/jxb/erz032 pmid: 30753656 |
[31] | Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907. |
[32] |
Duncan K A, Hardin S C, Huber S C. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol, 2006, 47: 959-971.
pmid: 16760218 |
[33] |
Pellny T K, Lovegrove A, Freeman J, Tosi P, Love C G, Paul Knox J, Shewry P R, Mitchell R A C. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol, 2012, 158: 612-627.
doi: 10.1104/pp.111.189191 pmid: 22123899 |
[34] |
Enders T A, Strader L C. Auxin activity: past, present, and future. Am J Bot, 2015, 102: 180-196.
doi: 10.3732/ajb.1400285 pmid: 25667071 |
[35] | 于永超.生长素-糖调控水稻弱势粒灌浆的生理机制研究. 南京农业大学硕士学位论文, 江苏南京, 2022. |
Yu Y C. Mechanisms of Indole-3-acetic Acid (IAA) and Sugar Effects on the Inferior Spikelets Filling in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract). | |
[36] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[37] | Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107. |
[38] |
Zhao Z G, Zhang Y H, Liu X, Zhang X, Liu S C, Yu X W, Ren Y L, Zheng X M, Zhou K N, Jiang L, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell, 2013, 27: 113-122.
doi: 10.1016/j.devcel.2013.09.005 pmid: 24094741 |
[39] | Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119. |
[40] |
Grover A, Sharma P C. Development and use of molecular markers: past and present. Crit Rev Biotechnol, 2016, 36: 290-302.
doi: 10.3109/07388551.2014.959891 pmid: 25430893 |
[41] |
Garrido-Cardenas J A, Mesa-Valle C, Manzano-Agugliaro F. Trends in plant research using molecular markers. Planta, 2018, 247: 543-557.
doi: 10.1007/s00425-017-2829-y pmid: 29243155 |
[42] |
Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[43] | Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223. |
[44] | Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330-1342. |
[45] | Zhang Y J, Liu J D, Xia X C, He Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097-1107. |
[46] | 李辛丽.小麦品质性状的QTL定位及优质资源筛选. 四川农业大学硕士学位论文, 四川成都, 2024. |
Li X L. QTL for Wheat Quality Traits and Screening of High-quality Resources. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2024 (in Chinese with English abstract). | |
[47] | 安悦.湖北省小麦的HMW-GS组成及其与品质性状的相关分析. 华中农业大学硕士学位论文. 湖北武汉, 2023. |
An Y. HMW-GS Composition and Its Correlation with Quality Characters of Wheat in Hubei. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract). | |
[48] | 关智仁.小麦品种群体品质性状评价及GWAS分析. 山东农业大学硕士学位论文, 山东泰安, 2022. |
Guan Z R. Evaluation of Quality Traits and Genome-wide Association Study (GWAS) Using Variety Population in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract). |
[1] | 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466. |
[2] | 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664. |
[3] | 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547. |
[4] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[5] | 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557. |
[6] | 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653. |
[7] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[8] | 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276. |
[9] | 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420. |
[10] | 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247. |
[11] | 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362. |
[12] | 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229. |
[13] | 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325. |
[14] | 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130. |
[15] | 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109. |
|