欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1725-1735.doi: 10.3724/SP.J.1006.2025.44201

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于BSA-seq技术的块茎芽眼深度QTL定位分析

邵顺伟1,2,陈卓1,兰振东1,2,蔡兴奎2,邹华芬1,李晨曦2,唐景华1,朱熙1,张彧1,董建科2,金辉1,*,宋波涛2,*   

  1. 1中国热带农业科学院南亚热带作物研究所 / 农业农村部热带果树生物学重点实验室 / 海南省热带园艺产品采后生理与保鲜重点实验室, 广东湛江524091; 2果蔬园艺作物种质创新与利用全国重点实验室 / 农村农业部马铃薯生物学与生物技术重点实验室 / 华中农业大学, 湖北武汉430070
  • 收稿日期:2024-12-03 修回日期:2025-04-27 接受日期:2025-04-27 出版日期:2025-07-12 网络出版日期:2025-05-07
  • 基金资助:
    本研究由广东省重点领域研发计划项目(2022B0202060001), 中央级公益性科研院所基本科研业务费专项(1630062024011), 海南省自然科学基金青年基金项目(323QN296, 323QN328)和国家自然科学基金地区基金项目(32360459)资助。

QTL mapping of tuber eye depth based on BSA-seq technique

SHAO Shun-Wei1,2,CHEN Zhuo1,LAN Zhen-Dong1,2,CAI Xing-Kui2,ZOU Hua-Fen1,LI Chen-Xi2,TANG Jing-Hua1,ZHU Xi1,ZHANG Yu1,DONG Jian-Ke2,JIN Hui1,*,SONG Bo-Tao2,*   

  1. 1Institute of South Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs / Key Laboratory for Post-harvest Physiology and Preservation of Tropical Horticultural Products of Hainan, Zhanjiang 524091, Guangdong, China; 2 National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-12-03 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-07-12 Published online:2025-05-07
  • Supported by:
    This study was supported by the Guangdong Provincial Key Areas Research and Development Program (2022B0202060001), the Special Fund for Basic Scientific Research Operating Expenses of Central-level Public Welfare Research Institutes (1630062024011), the Hainan Provincial Natural Science Foundation Youth Fund (323QN296, 323QN328), and the Regional Fund of the National Natural Science Foundation of China (32360459).

摘要:

芽眼深度是马铃薯块茎的重要性状之一,对马铃薯的外观品质及加工适宜性具有重要影响。为挖掘控制马铃薯芽眼深度的数量性状位点,本研究以四倍体深芽眼品种华薯12”为母本、浅芽眼高代品系2002-4-5”为父本,杂交获得F1代分离群体,共255份无性系。基于连续2年田间表型观测数据,分别选取20个深芽眼和20个浅芽眼个体构建混合池,利用BSA-seq技术进行芽眼深度相关性状的QTL定位,并结合传统QTL定位方法,采用完备区间作图法构建遗传连锁图谱,成功定位到2个与芽眼深度相关的QTL位点。2年表型相关性分析结果表明,马铃薯块茎芽眼深度主要受遗传因素的控制。10号染色体上qEyd10.1位点的LOD值为4.96,表型贡献率为14.49%3号染色体上qEyd3.1位点的LOD值为3.29,表型贡献率为10.18%。其中,qEyd3.1与此前报道的芽眼深度调控位点一致,而qEyd10.1为新发现的QTL2个位点的加性效应均为负值,表明降低芽眼深度的等位基因来源于浅芽眼亲本2002-4-5”。通过对定位区间内候选基因注释结合芽眼深浅材料基因结构变异分析,推测Soltu.DM.10G029390.1Soltu.DM.03G036540.1Soltu.DM.03G036140.1Soltu.DM.03G036580.1可能为与芽眼深度相关的候选基因。本研究通过BSA-seq与传统QTL定位相结合的方式,快速完成了同源四倍体马铃薯中芽眼深度这一数量性状的调控位点定位工作,并初步确定了4个候选基因,为进一步完成芽眼深度调控基因的克隆及其遗传机制解析奠定了重要基础,也为培育具有浅芽眼块茎的四倍体马铃薯新品种提供了参考。

关键词: 马铃薯, 芽眼深度, QTL定位, BSA-seq, 遗传连锁图谱

Abstract: Eye depth is an important trait of potato tubers, significantly affecting both their appearance and processing quality. To identify quantitative trait loci (QTLs) associated with eye depth, a cross was made between the tetraploid deep-eyed variety “Hua Shu 12” (female) and the shallow-eyed advanced line “Tian 2002-4-5” (male), generating 255 clonal F1 progeny. Based on field phenotypic data collected over two consecutive years, 20 deep-eyed and 20 shallow-eyed individuals were selected to construct bulks for QTL mapping. The BSA-seq approach was employed to detect QTLs related to eye depth, and combined with traditional QTL mapping methods, a complete interval mapping analysis was conducted to construct a genetic linkage map. Two QTLs associated with eye depth were successfully identified. Phenotypic correlation analysis across both years suggested that tuber eye depth is primarily controlled by genetic factors. The LOD score for locus qEyd10.1 on chromosome 10 was 4.96, with a phenotypic variance explained (PVE) of 14.49%, while qEyd3.1 on chromosome 3 had a LOD score of 3.29 and a PVE of 10.18%. Notably, qEyd3.1 corresponds to a previously reported eye depth locus, whereas qEyd10.1 represents a novel QTL. Both loci exhibited negative additive effects, indicating that the allele responsible for reduced eye depth was inherited from the shallow-eyed parent “Tian 2002-4-5”. Through candidate gene annotation within the mapped intervals and analysis of gene structural variation between deep- and shallow-eyed materials, four candidate genes: Soltu.DM.10G029390.1, Soltu.DM.03G036540.1, Soltu.DM.03G036140.1, and Soltu.DM.03G036580.1 were preliminarily identified as potentially associated with eye depth. This study, by integrating BSA-seq with conventional QTL mapping in autotetraploid potato, provides a preliminary identification of candidate genes regulating tuber eye depth. These findings lay a foundation for future gene cloning and genetic mechanism studies, and offer a valuable reference for breeding new tetraploid potato varieties with shallower eyes.

Key words: potato, eye depth, QTL mapping, bulked segregant analysis sequencing, genetic linkage map

[1] 李结平, 单友蛟. 马铃薯育种技术的优化与新形势下的发展. 中国马铃薯, 2023, 37(3): 265272.

Li J P, Shan Y J. Optimization on potato breeding technology and its development under new situation. Chin Potato J, 2023, 37(3): 265–272 (in Chinese with English abstract).

[2] Fan G Y, Wang Q R, Xu J F, Chen N, Zhu W W, Duan S G, Yang X H, De Jong W S, Guo Y D, Jin L P, et al. Fine mapping and candidate gene prediction of Tuber shape controlling Ro locus based on integrating genetic and transcriptomic analyses in potato. Int J Mol Sci, 2022, 23: 1470.

[3] 门福义, 刘梦芸. 马铃薯栽培生理. 北京: 中国农业出版社, 1995.

Men F Y, Liu M Y. Potato Cultivation Physiology. Beijing: China Agriculture Press, 1995 (in Chinese).

[4] 刘梦芸, 门福义. 马铃薯块茎生长发育的研究. 内蒙古农牧学院学报, 1987, (2): 104116.

Liu M Y, Men F Y. Research on the growth and development of potato tubers. J Inner Mongolia Coll Agric Animal Husb, 1987, (2): 104116 (in Chinese).

[5] 韦孟, 许慧珍, 张宁, 司怀军, 唐勋. 中国马铃薯加工业现状调查分析及发展对策. 中国马铃薯, 2024, 38(2): 176185.

Wei M, Xu H Z, Zhang N, Si H J, Tang X. Investigation on current situation of potato processing industry and relevant countermeasure in China. Chin Potato J, 2024, 38(2): 176185 (in Chinese with English abstract).

[6] Zemtcova M A, Timofeeva I I. Technological assessment of potato varieties for suitability for conversion to crisps and French fries. Zaschita Kartofelya Potato Prot, 2011, 1: 1720. 

[7] 吕建春. 薄皮甜瓜(Cucumis melo L. var. chinensis pangalo)果皮花斑的遗传分析及基因定位. 中国农业科学院硕士学位论文, 北京, 2018.

Lyu J C. Inheritance and Gene Mapping of Spotted Trait in Melon (Cucumis melo L. var .chinensis Pangalo). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).

[8] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832.

[9] 周强. 玉米穗粒性状QTL的初步定位及两个百粒重QTL的验证, 河南农业大学硕士学位论文, 河南郑州, 2012.

Zhou Q. QTL Detection for Ear-Kernel Traits and Verification for Two 100-grain Weight QTLs in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract). 

[10] 赵海燕. 基于BSA技术的水稻(Oryza sativa L.)粒长基因初步定位及候选基因分析. 华南农业大学硕士学位论文, 广东广州, 2017.

Zhao H Y. Primary Mapping of Genes for Grain Length Using the Bulked Segregant Analysis Method and Analysis of Candidate Genes in Rice (Oryza sativa L.). MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract).

[11] 吴建辉. 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学硕士学位论文, 陕西杨凌, 2017.

Wu J H. QTL Mapping for Adulp-Plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-seq and Snp Array. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).

[12] 金兴红. 基于BSA法开发马铃薯淀粉含量相关SSR标记及候选基因的初步筛选. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2022.

Jin X H. Development of Potato SSR Molecular Markers Associated with Starch Content Based on BSA Method and Preliminary Screening of Candidate Genes. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2022 (in Chinese with English abstract).

[13] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位. 作物学报, 2023, 49: 10061015.

Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Zong X X, Yang T. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Acta Agron Sin2023, 49: 10061015 (in Chinese with English abstract).

[14] 朱文文. 马铃薯块茎形状基因的遗传定位与分子标记开发. 中国农业科学院硕士学位论文, 北京, 2015.

Zhu W W. Genetic Mapping and Molecular Markers Development of Tuber Shape Gene in Potato. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). 

[15] 金兴红, 于卓, 张霞, 于肖夏, 李佳奇, 李景伟. 基于BSA法开发马铃薯高淀粉相关SSR标记及候选基因筛选. 分子植物育种, 网络首发[2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010.

Jin X H, Yu Z, Zhang X, Yu X X, Li J Q, Li J W. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010 (in Chinese with English abstract).

[16] 张霞, 于卓, 张海龙, 于肖夏, 杨馨月, 尹明达. 基于BSA技术的彩色马铃薯花青素含量相关SSR标记的开发与验证. 分子植物育种, 网络首发[2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004.

Zhang X, Yu Z, Zhang H L, Yu X X, Yang X Y, Yin M D. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004 (in Chinese with English abstract).

[17] Li X Q, Jong H D, De Jong D M, De Jong W S. Inheritance and genetic mapping of Tuber eye depth in cultivated diploid potatoes. Theor Appl Genet, 2005, 110: 1068–1073.

[18] 盛万民. 马铃薯野生种Solanum demissum与栽培品种杂交后代的遗传分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2009.

Sheng W M. Genetic Analysis on Hibird Populations Derived from Solanum Demissum Crossed Cultivated Varieties. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract). 

[19] ŚLiwka J, Wasilewicz-Flis I, Jakuczun H, Gebhardt C. Tagging quantitative trait loci for dormancy, Tuber shape, regularity of Tuber shape, eye depth and flesh colour in diploid potato originated from six Solanum species. Plant Breed, 2008, 127: 49–55.

[20] Prashar A, Hornyik C, Young V, McLean K, Sharma S K, Dale M F, Bryan G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of Tuber shape and eye depth. Theor Appl Genet, 2014, 127: 2159–2171.

[21] Rosyara U R, De Jong W S, Douches D S, Endelman J B. Software for genome-wide association studies in autopolyploids and its application to potato. Plant Genome, 2016, 9: 110.

[22] Sharma S K, MacKenzie K, McLean K, Dale F, Daniels S, Bryan G J. Linkage disequilibrium and evaluation of genome-wide association mapping models in tetraploid potato. G3, 2018, 8: 3185–3202.

[23] Pandey J, Scheuring D C, Koym J W, Isabel Vales M. Genomic regions associated with Tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes. Front Plant Sci, 2022, 13: 952263.

[24] 韩志刚. 马铃薯种质主要农艺性状及淀粉含量的全基因组关联分析. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2021.

Han Z G. Genome-wide Association Analysis of Main Agronomic Traits and Starch Content of Potato Germplasm. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).

[25] 王舰. 马铃薯种质资源遗传多样性研究及块茎性状的全基因组关联分析. 中国农业大学博士学位论文, 北京, 2017.

Wang J. Genetic Diversity Assessment of Accessions and Genome-wide Association Analysis of Tuber Characters in Potato. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).

[26] 史可昕, 石瑛, 张朝澍. 基于BSA-seq技术的马铃薯块茎蛋白含量基因定位与分子标记开发. 西南农业学报, 2023, 36: 505–514.

Shi K X, Shi Y, Zhang C S. Gene mapping and molecular marker development of potato Tuber protein content based on BSA-seq technology. Southwest China J Agric Sci, 2023, 36: 505–514 (in Chinese with English abstract).

[27] Fan G Y, Duan S G, Yang Y T, Duan Y F, Jian Y Q, Hu J, Liu Z Y, Guo Y D, Jin L P, Xu J F, et al. Fine-mapping and candidate gene analysis of Tuber eye depth in potato. Hortic Plant J, 2024, 3: 269–283.

[28] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754–1760.

[29] Xu X, Pan S K, Cheng S F, Zhang B, Mu D S, Ni P X, Zhang G Y, Yang S, Li R Q, Wang J, et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189–195.

[30] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Joseph Yost H. MMAPPR: mutation mapping analysis pipeline for pooled RNA–seq. Genome Res, 2013, 23: 687–697. 

[31] Li Z, Chen X X, Shi S Q, Zhang H W, Wang X, Chen H, Li W F, Li L. DeepBSA: a deep-learning algorithm improves bulked segregant analysis for dissecting complex traits. Mol Plant, 2022, 15: 1418–1427.

[32] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[33] Zhang F, Qu L, Gu Y C, Xu Z H, Xue H W. Resequencing and genome-wide association studies of autotetraploid potato. Mol Hortic, 2022, 2: 6.

[34] Zhao L, Zou M L, Deng K, Xia C C, Jiang S R, Zhang C J, Ma Y Z, Dong X R, He M H, Na T C, et al. Insights into the genetic determination of Tuber shape and eye depth in potato natural population based on autotetraploid potato genome. Front Plant Sci, 2023, 14: 1080666.

[35] Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. QTL for Tuber morphology traits in diploid potato. J Appl Genet, 2018, 59: 123–132.

[36] Totsky I V, Rozanova I V, Safonova A D, Batov A S, Gureeva Y A, Kochetov A V, Khlestkina E K. Genomic regions of Solanum tuberosum L. associated with the Tuber eye depth. Vavilovskii Zhurnal Genet Selektsii, 2020, 24: 465–473.

[37] Karampelias M, Neyt P, De Groeve S, Aesaert S, Coussens G, Rolčík J, Bruno L, De Winne N, Van Minnebruggen A, Van Montagu M, et al. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proc Natl Acad Sci USA, 2016, 113: 2768–2773. 

[38] Hwang I S, Choi D S, Kim N H, Kim D S, Hwang B K. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytol, 2014, 201: 518–530.

[39] Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol, 2008, 49: 1396–1401.

[40] Yuan L X, Wang J, Guan Z L, Yue F L, Wang S F, Chen Q M, Fu M R. Optimized preparation of methyl salicylate hydrogel and its inhibition effect on potato Tuber sprouting. Horticulturae, 2022, 8: 866.

[41] 王派. 调控AtHARBI1-1基因的MYB转录因子筛选与功能研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.

Wang P. Screening and Functional Study of MYB Transcription Factors Regulating AtHARBI1-1 Gene. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).

[42] Tameshige T, Okamoto S, Lee J S, Aida M, Tasaka M, Torii K U, Uchida N. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis. Curr Biol, 2016, 26: 2478–2485.

[43] Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One, 2013, 8: e65183.


[1] 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724.
[2] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[3] 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756.
[4] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
[5] 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177.
[6] 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420.
[7] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[8] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[9] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[10] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[11] 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272.
[12] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[13] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[14] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[15] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .