欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1874-1886.doi: 10.3724/SP.J.1006.2025.53001

• 耕作栽培·生理生化 • 上一篇    下一篇

CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响

董伟进1,2,张亚封1,2,李启云1,2,路杨2,张正坤2,*,隋丽2,*   

  1. 1吉林农业大学, 吉林长春130118; 2吉林省农业科学院植物保护研究所 / 吉林省农业微生物重点实验室 / 农业农村部东北作物有害生物综合治理重点实验室, 吉林长春136100
  • 收稿日期:2025-01-02 修回日期:2025-04-25 接受日期:2025-04-25 出版日期:2025-07-12 网络出版日期:2025-05-06
  • 基金资助:
    本研究由国家自然科学基金项目(32271683)和吉林省农业科技创新工程项目(CXGC2024RCY017, CXGC2024JJ11)资助。

Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration

DONG Wei-Jin1,2,ZHANG Ya-Feng1,2,LI Qi-Yun1,2,LU Yang2,ZHANG Zheng-Kun2,*,SUI Li2,*   

  1. 1 Jilin Agricultural University, Changchun 130118, Jilin, China; 2 Institute of Plant Protection, Jilin Academy of Agricultural Sciences / Jilin Provincial Key Laboratory of Agricultural Microbiology / Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun 136100, Jilin, China
  • Received:2025-01-02 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-07-12 Published online:2025-05-06
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32271683) and the Agricultural Science and Technology Innovation Project of Jilin Province (CXGC2024JJ11, CXGC2024RCY017).

摘要:

球孢白僵菌(Beauveria bassiana)作为昆虫病原真菌,能够在植物体内定殖,既促进植物生长,又增强其抗生物和非生物胁迫能力。大气CO2浓度呈现逐年上升的态势,这一变化不仅深刻影响着植物个体的生长发育和生理生化过程,还在微观层面调控着植物与微生物之间复杂的互作关系。然而,在CO2浓度升高条件下,球孢白僵菌定殖对植物生长发育、产量以及籽粒品质的影响,目前仍缺乏系统且深入的研究。本研究以玉米(Zea mays)为试验对象,设置(400±50) μmol mol?1的正常CO2浓度和(600±50) μmol mol?1的高CO2浓度2个梯度,研究球孢白僵菌定殖对玉米农艺性状、干物质积累、产量和籽粒品质的作用,并分析各因素相关性。研究结果表明,在2种不同CO2浓度条件下,经球孢白僵菌定殖的玉米植株株高、茎粗增长显著,生物量积累也有所提升;在产量和品质方面,球孢白僵菌定殖同样表现出增产提质的优势。进一步分析显示,在高CO2浓度条件下,球孢白僵菌定殖对玉米的正向促进作用更为显著。综上,CO2浓度升高条件下,球孢白僵菌定殖能够使玉米生理适应性和生态稳定性增强,资源利用效率提高,对产量和品质产生积极影响。本研究为理解微生物-植物互作提供新视角,也为未来农业可持续发展提供新思路。

关键词: 气候变化, 虫生真菌, 内生定殖, 产量构成, 籽粒品质

Abstract: As an entomopathogenic fungus, Beauveria bassiana has been shown to colonize host plants, where it not only promotes plant growth but also enhances resistance to both biotic and abiotic stresses. In the context of accelerating global industrialization, atmospheric CO2 concentrations are rising steadily, profoundly influencing plant growth, development, and physiological and biochemical processes. Moreover, elevated CO2 levels regulate complex interactions between plants and microorganisms at the microecological level. However, the impact of B. bassiana colonization on plant performance and grain quality under elevated CO2 conditions remains insufficiently understood. In this study, we investigated the effects of B. bassiana colonization on agronomic traits, dry matter accumulation, yield, and grain quality of maize (Zea mays) under two atmospheric CO2 concentrations: ambient (400?±?50) μmol mol?1 and elevated (600?±?50) μmol mol?1. The results revealed that B. bassiana-colonized maize exhibited significantly increased plant height, stem diameter, and biomass accumulation under both CO2 conditions. In terms of yield and grain quality, colonization also resulted in notable improvements. Furthermore, the beneficial effects of B. bassiana were more pronounced under elevated CO2, leading to accelerated growth rates and enhanced biomass and grain quality. In conclusion, B. bassiana colonization enhances the physiological adaptability and ecological stability of maize under elevated CO2 conditions. These findings provide new insights into plant-microbe interactions and offer promising strategies for advancing sustainable agricultural development in the face of climate change.

Key words: climate change, entomogenous fungi, endophytic colonization, yield composition, grain quality

[1] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46: 1819–1830.
Li Y S, Jin J, Liu X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agron Sin, 2020, 46: 1819–1830 (in Chinese with English abstract).

[2] Saleh A M, Abdel-Mawgoud M, Hassan A R, Habeeb T H, Yehia R S, AbdElgawad H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2. Plant Physiol Biochem, 2020, 151: 255–263.

[3] Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits. Biochem J, 2023, 480: 1791–1804.

[4] Rasmussen P U, Bennett A E, Tack A J M. The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. J Ecol, 2020, 108: 337–352.

[5] Smith S E, Jakobsen I, Grønlund M, Andrew Smith F. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol, 2011, 156: 1050–1057.

[6] Phour M, Sindhu S S. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta, 2022, 256: 85.

[7] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展. 作物学报, 2022, 48: 1–14.
Jian S L, Li S X, Liu S Q, Li X N. Research advances of cover crops and their important roles. Acta Agron Sin, 2022, 48: 1–14 (in Chinese with English abstract).

[8] 隋丽, 路杨, 姜媛媛, 万婷玉, 徐文静, 张正坤, 李启云. 内生性虫生真菌在生物防治中的研究现状与展望. 玉米科学, 2021, 29(6): 169–174.
Sui L, Lu Y, Jiang Y Y, Wan T Y, Xu W J, Zhang Z K, Li Q Y. Advance and prospect of endophytic entomopathogenic fungi in biological control. J Maize Sci, 2021, 29(6): 169–174 (in Chinese with English abstract).

[9] Sui L, Lu Y, Zhou L Y, Li N N, Li Q Y, Zhang Z K. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol, 2023, 14: 1227269.

[10] 李芳, 张珏锋, 钟海英, 陈建明. 锌离子响应转录激活因子ZafA对球孢白僵菌锌离子利用及生防潜能的影响. 菌物学报, 2022, 41: 570–586.
Li F, Zhang J F, Zhong H Y, Chen J M. Effects of zinc-responsive transcriptional activator ZafA on zinc utilization and biocontrol potential of Beauveria bassiana. Mycosystema, 2022, 41: 570–586 (in Chinese with English abstract).

[11] González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J Pest Sci, 2019, 92: 1271–1281.

[12] Shrivastava G, Ownley B H, Augé R M, Toler H, Dee M, Vu A, Köllner T G, Chen F. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against an herbivorous insect. Symbiosis, 2015, 65: 65–74.

[13] Sui L, Zhu H, Wang D L, Zhang Z K, Bidochka M J, Barelli L, Lu Y, Li Q Y. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. Pest Manag Sci, 2024, 80: 4575–4584.

[14] Gana L P, Etsassala N G E R, Nchu F. Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. J Fungi, 2022, 8: 874.

[15] 文欢, 张正坤, 李启云, 路杨, 隋丽. 大气CO2浓度升高下球孢白僵菌定殖对玉米植株生长及光合的影响. 生态学报, 2025, 45(2): 1–10.
Wen H, Zhang Z K, Li Q Y, Lu Y, Sui L. Effects of Beauteria bassiana colonization on the growth and photosythesis of maize plants under elevated CO2. Acta Ecol Sin, 2025, 45(2): 1–10 (in Chinese with English abstract).

[16] 费泓强, 隋丽, 朱慧, 徐文静, 陈日曌, 汪洋洲, 李启云, 王德利. 球孢白僵菌在玉米苗期的定殖及其对玉米生理生化特性的影响. 中国生物防治学报, 2016, 32: 721–727.
Fei H Q, Sui L, Zhu H, Xu W J, Chen R Z, Wang Y Z, Li Q Y, Wang D L. Colonization of Beauveria bassiana in maize seedlings and its effect on their physiological-biochemical characteristics. Chin J Biol control, 2016, 32: 721–727 (in Chinese with English abstract).

[17] 隋丽, 徐文静, 张正坤, 杨芷, 王志慧, 杜茜, 汪洋洲, 陈日曌, 李启云, 路杨. GFP标记的球孢白僵菌在玉米中的定殖. 中国生物防治学报, 2018, 34: 848–857.
Sui L, Xu W J, Zhang Z K, Yang Z, Wang Z H, Du Q, Wang Y Z, Chen R Z, Li Q Y, Lu Y. Colonization of GFP-tagged Beauveria bassiana in maize. Chin J Biol control 2018, 34: 848–857 (in Chinese with English abstract).

[18] Sui L, Zhu H, Xu W J, Guo Q F, Wang L, Zhang Z K, Li Q Y, Wang D L. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecol, 2020, 47: 100940.

[19] 赵玉萍, 邹志荣, 白鹏威, 任雷, 李鹏飞. 不同温度对温室番茄生长发育及产量的影响. 西北农业学报, 2010, 19: 133–137.
Zhao Y P, Zou Z R, Bai P W, Ren L, Li P F. Effect of different temperature on the growth and yield of tomato in greenhouse. Acta Agric Boreali-Occident Sin, 2010, 19: 133–137 (in Chinese with English abstract).

[20] Fernandez J A, Nippert J B, Vara Prasad P V, Messina C D, Ciampitti I A. Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea mays) genotypes. J Plant Physiol, 2022, 268: 153577.

[21] 司海丽, 纪立东, 刘菊莲, 柳骁桐, 郑淑欣. 有机肥施用量对玉米产量、土壤养分及生物活性的影响. 西南农业学报, 2022, 35: 740–747.
Si H L, Ji L D, Liu J L, Liu X T, Zheng S X. Effects of organic fertilizer application rate on maize yield, soil nutrients and biological activity. Southwest China J Agric Sci, 2022, 35: 740–747 (in Chinese with English abstract).

[22] 连晓荣, 何海军, 李永生, 周文期, 王晓娟, 杨彦忠, 刘忠祥, 张彦军, 周玉乾. 不同种植模式对玉米光合特性、产量及品质的影响. 干旱地区农业研究, 2024, 42(4): 167–177.
Lian X R, He H J, Li Y S, Zhou W Q, Wang X J, Yang Y Z, Liu Z X, Zhang Y J, Zhou Y Q. Effects of different planting patterns on photosynthesis characteristic, grain yield and quality of maize. Agric Res Arid Areas, 2024, 42(4): 167–177 (in Chinese with English abstract).

[23] 隋丽, 万婷玉, 路杨, 徐文静, 张正坤, 李启云. 内生真菌对植物促生、抗逆作用研究进展. 中国生物防治学报, 2021, 37: 1325–1331.
Sui L, Wan T Y, Lu Y, Xu W J, Zhang Z K, Li Q Y. Review of fungal endophytes on plant growth promotion and stress resistance. Chin J Biol Control, 2021, 37: 1325–1331 (in Chinese with English abstract).

[24] Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M. The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology, 2022, 112: 784–793.

[25] Dash C K, Bamisile B S, Keppanan R, Qasim M, Lin Y W, Islam S U, Hussain M, Wang L D. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb Pathog, 2018, 125: 385–392.

[26] Macuphe N, Oguntibeju O O, Nchu F. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, 2021, 10: 1178.

[27] Chen J F, Liu Y, Tang G R, Jin D, Chen X, Pei Y, Fan Y H. The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA-AbaA-WetA pathway in Beauveria bassiana. Environ Microbiol, 2021, 23: 810–825.

[28] Batool R, Umer M J, Zhang Y J, Guo J F, Wang Z Y. Phytol-induced interplant signaling in maize facilitates EXP-A20-driven resistance through ACO31-dependent ethylene accumulation against Ostrinia furnacalis. Plant J, 2025, 121: e17186.

[29] Abdelhameed R E, Soliman E R S, Gahin H, Metwally R A. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC Plant Biol, 2024, 24: 662.

[30] Amobonye A, Bhagwat P, Pandey A, Singh S, Pillai S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol, 2020, 40: 1019–1034.

[31] Sánchez-Rodríguez A R, Del Campillo M C, Quesada-Moraga E. Beauveria bassiana: an entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic, 2015, 197: 193–202.

[32] Zou S P, Ma Y Z, Zhao L X, Chen X M, Gao H L, Chen J, Xue Y P, Zheng Y G. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy) propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng, 2024, 47: 1803–1814.

[33] 李子正, 蔡廷阳, 李元鑫, 杨婧, 张蕾蕾, 燕志翔, 褚鹏飞, 孟维伟, 王旭清. 球孢白僵菌与哈茨木霉对玉米苗期促生抗逆的影响. 山东农业科学, 2023, 55(8): 39–47.
Li Z Z, Cai T Y, Li Y X, Yang J, Zhang L L, Yan Z X, Chu P F, Meng W W, Wang X Q. Effects of Beauveria bassiana and Trichoderma harzianum on growth promotion and stress resistance of maize seedlings. Shandong Agric Sci, 2023, 55(8): 39–47 (in Chinese with English abstract).

[34] 许绍欢, 许忠顺, 杜飞, 刘京, 萄剑渝, 邹晓. 混合接种球孢白僵菌与摩西球囊霉对烟草促生抗逆影响. 菌物学报, 2021, 40: 2191–2200.
Xu S H, Xu Z S, Du F, Liu J, Tao J Y, Zou X. Effects of mixed inoculation of Beauveria bassiana and Glomus mosseae on tobacco growth and stress resistance. Mycosystema, 2021, 40: 2191–2200 (in Chinese with English abstract).

[35] 况再银, 童文, 孙佩, 曾华兰, 叶鹏盛, 赵馨怡, 龙艳梅. 球孢白僵菌的侵染特性及应用研究进展. 微生物学通报, 2023, 50: 3187–3197.
Kuang Z Y, Tong W, Sun P, Zeng H L, Ye P S, Zhao X Y, Long Y M. Research progress in infection characteristics and application of Beauveria bassiana. Microbiol China, 2023, 50: 3187–3197 (in Chinese with English abstract).

[36] Tian W, Su C F, Zhang N, Zhao Y W, Tang L. Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration. Ecol Model, 2024, 495: 110805.

[37] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响. 作物学报, 2025, 51: 10611076.
Wang J, Bai H X, Han Y Y, Liang H, Feng Y N, Zhang D S, Li P, Zong Y Z, Shi X R, Hao X Y. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves. Acta Agron Sin, 2025, 51: 10611076 (in Chinese with English abstract).

[38] 朱智远, 贾辰雁, 丁孝伟, 沈娇, 张萌, 张浩男, 韩烈保. CO2加富与不同光强对高羊茅幼苗生长的影响. 草业科学, 2024, 41: 2564–2575.
Zhu Z Y, Jia C Y, Ding X W, Shen J, Zhang M, Zhang H N, Han L B. Effects of CO2 enrichment and different light intensities on the growth of tall fescue seedlings. Pratac Sci, 2024, 41: 2564–2575 (in Chinese with English abstract).

[39] 邢红爽, 乌佳美, 陈健, 史作民. 植物光合作用限制因素与植被生产力研究进展. 生态学报, 2023, 43: 51865199.
Xing H S, Wu J M, Chen J, Shi Z M. Research progress on limiting factors of plant photosynthesis and vegetation productivity. Acta Ecol Sin, 2023, 43: 5186–5199 (in Chinese with English abstract).

[40] 张凯, 王润元, 王鹤龄, 赵鸿, 赵福年, 齐月, 陈斐, 杨阳, 雷俊. CO2浓度增加对半干旱区马铃薯生长动态及产量、品质的影响. 干旱地区农业研究, 2023, 41: 238–246.
Zhang K, Wang R Y, Wang H L, Zhao H, Zhao F N, Qi Y, Chen F, Yang Y, Lei J. Effects of elevated CO2 concentration on growth dynamics, yield and quality of potato in semi-arid area. Agric Res Arid Areas, 2023, 41: 238–246 (in Chinese with English abstract).

[41] 宗毓铮, 张函青, 李萍, 张东升, 林文, 薛建福, 高志强, 郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4984–4995.
Zong Y Z, Zhang H Q, Li P, Zhang D S, Lin W, Xue J F, Gao Z Q, Hao X Y. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in north China. Sci Agric Sin, 2021, 54: 4984–4995 (in Chinese with English abstract).

[42] 杨爱峥, 李志磊, 付强, 李全峰, 贺昕瑶. CO2浓度倍增和土壤盐胁迫对藜麦生理特征及产量的影响. 农业工程学报, 2021, 37: 181–187.

Yang A Z, Li Z L, Fu Q, Li Q F, He X Y. Effects of elevated atmospheric CO2 on physiological characteristics and yield of quinoa to salinity stress. Trans CSAE, 2021, 37: 181–187 (in Chinese with English abstract).

[43] 宋春燕, 万运帆, 李玉娥, 蔡岸冬, 胡严炎, 周慧, 朱波, 王斌. 温度和CO2浓度升高下双季稻茎蘖动态、成穗率与产量的关系. 作物杂志, 2023, (3): 159–166.
Song C Y, Wan Y F, Li Y E, Cai A D, Hu Y Y, Zhou H, Zhu B, Wang B. Relationships among stem tiller dynamics, spike formation and yield of double-cropped rice under elevated temperature and CO2 concentration. Crops, 2023, (3): 159–166 (in Chinese with English abstract).

[44] Miyagi A, Uchimiya H, Kawai-Yamada M. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chem, 2017, 218: 561–568.

[45] 王春乙, 郭建平, 崔读昌, 王修兰, 梁红, 徐师华. CO2浓度增加对小麦和玉米品质影响的实验研究. 作物学报, 2000, 26: 931–936.
Wang C Y, Guo J P, Cui D C, Wang X L, Liang H, Xu S H. The experimental research about the effects of CO2 enrichment on wheat and corn quality. Acta Agron Sin, 2000, 26: 931–936 (in Chinese with English abstract).

[46] 牛玺朝, 户少武, 杨阳, 童楷程, 景立权, 朱建国, 王余龙, 杨连新, 王云霞. 大气CO2浓度增高对不同水稻品种稻米品质的影响. 中国生态农业学报(中英文), 2021, 29: 509–519.
Niu X C, Hu S W, Yang Y, Tong K C, Jing L Q, Zhu J G, Wang Y L, Yang L X, Wang Y X. Effects of CO2 concentration enrichment on the grain quality of different rice varieties. Chin J Eco-Agric, 2021, 29: 509–519 (in Chinese with English abstract).

[47] 李常鑫, 闫琪, 倪莉莉, 张淑鑫, 王丽梅. 大气CO2浓度升高对玉米非结构性碳水化合物和籽粒品质的影响. 应用生态学报, 2023, 34: 123–130.
Li C X, Yan Q, Ni L L, Zhang S X, Wang L M. Effects of elevated atmospheric CO2 concentration on nonstructural carbohydrates and grain quality of maize. Chin J Appl Ecol, 2023, 34: 123–130 (in Chinese with English abstract).

[48] Rajasekar S, Elango R. Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Current Botany, 2011, 35: 167–171.

[49] 曹志强, 金慧, 许永华, 张引, 杨文志. 微生物菌剂用于连续移栽人参实验研究. 微生物学杂志, 2005, 25(3): 105107.
Cao Z Q, Jin H, Xu Y H, Zhang Y, Yang W Z. Continuous cultivation of ginseng in the same field with microbial preparation. J Microbiol, 2005, 25(3): 105–107 (in Chinese with English abstract).

[50] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响. 作物学报, 2021, 47: 1383–1390.
Deng Y, Wang J L, Wang C Y, Zhao L, Zhang L G, Guo H X, Guo H X, Qin L X, Wang M X. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa. Acta Agron Sin, 2021, 47: 1383–1390 (in Chinese with English abstract).

[1] 王芬, 吴东丽, 张全军. 湖北省一季稻发育期对气候变化的响应[J]. 作物学报, 2025, 51(7): 1934-1948.
[2] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[3] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[4] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[5] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[6] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[7] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[8] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[9] 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应[J]. 作物学报, 2024, 50(11): 2860-2869.
[10] 成华强, 侯青青, 朱敏, 杨轩. 气候变化与轮作制度对晋北饲用燕麦产草量的影响[J]. 作物学报, 2024, 50(10): 2599-2613.
[11] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[12] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[13] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315.
[14] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[15] 叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(11): 3063-3073.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[8] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .