作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1514-1525.doi: 10.3724/SP.J.1006.2025.41076
吴美娟1,2(), 张寅辉2, 李元昊2, 刘海霞2, 黄以琳2, 李甜2, 刘红霞2, 张学勇2, 郝晨阳1,2,*(
), 郭杰1,*(
), 侯健2,*(
)
WU Mei-Juan1,2(), ZHANG Yin-Hui2, LI Yuan-Hao2, LIU Hai-Xia2, HUANG Yi-Lin2, LI Tian2, LIU Hong-Xia2, ZHANG Xue-Yong2, HAO Chen-Yang1,2,*(
), GUO Jie1,*(
), HOU Jian2,*(
)
摘要:
小麦是重要的粮食作物之一, 持续提升其产量是育种的重要目标。提高粒重可以有效提高小麦单产, 而小麦籽粒的主要成分是淀粉。为全面解析淀粉合成通路关键酶基因TaSUS2对籽粒淀粉合成的作用, 本研究从小麦基因组中扩增了TaSUS2的全长cDNA序列, 并在科农199中对TaSUS2进行基因编辑, 获得2种纯合二突材料(KO-1、KO-2)和1种纯合的三突材料(KO-3)。转基因材料表型鉴定发现, 与野生型相比, TaSUS2的种子出现明显的皱缩, 粒重显著下降, 且籽粒胚乳中总淀粉含量、直链淀粉含量、绝对淀粉含量和A型淀粉的粒径也显著降低, 表明TaSUS2影响粒重和籽粒中的淀粉合成。转录组分析发现, TaSUS2-KO-3花后21 d的籽粒中淀粉合成通路上的多个主要合成酶基因上调表达。开发TaSUS2-2A-CAPS标记并鉴定了145份重测序材料, 发现TaSUS2影响淀粉含量、湿面筋含量、蛋白质含量及沉降值等品质性状, TaSUS2-2A-Hap-G是影响品质性状的优异单倍型。研究结果为阐析TaSUS2的生物学功能奠定了基础, 也为未来小麦的高产优质分子育种提供了基因资源。
[1] | Gao Y J, Li Y S, Xia W Y, Dai M Q, Dai Y, Wang Y G, Ma H G, Ma H X. The regulation of grain weight in wheat. Seed Biol, 2023, 2: 17. |
[2] | Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, et al. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 1799-1814. |
[3] | Housley T L, Kirleis A W, Ohm H W, Patterson F L. An evaluation of seed growth in soft red winter wheat. Can J Plant Sci, 1981, 61: 525-534. |
[4] |
Dale E M, Housley T L. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiol, 1986, 82: 7-10.
doi: 10.1104/pp.82.1.7 pmid: 16665025 |
[5] |
Lu H F, Hu Y Y, Wang C Y, Liu W X, Ma G, Han Q X, Ma D Y. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Front Plant Sci, 2019, 10: 1414.
doi: 10.3389/fpls.2019.01414 pmid: 31798603 |
[6] | Barron C, Surget A, Rouau X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci, 2007, 45: 88-96. |
[7] | Zuo J R, Li J Y. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev, 2014, 1: 253-276. |
[8] | International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788. |
[9] |
Kumar R, Mukherjee S, Ayele B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review. Biotechnol Adv, 2018, 36: 954-967.
doi: S0734-9750(18)30036-3 pmid: 29499342 |
[10] | Deol K K, Mukherjee S, Gao F, Brûlé-Babel A, Stasolla C, Ayele B T. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol, 2013, 13: 181. |
[11] |
Beckles D M, Smith A M, Rees T A. A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol, 2001, 125: 818-827.
doi: 10.1104/pp.125.2.818 pmid: 11161039 |
[12] |
Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328: 307-317.
doi: 10.1016/s0022-2836(03)00307-3 pmid: 12691742 |
[13] | Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827-831. |
[14] |
Sun J, Loboda T, Sung S J, Black C C. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol, 1992, 98: 1163-1169.
doi: 10.1104/pp.98.3.1163 pmid: 16668741 |
[15] |
Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J, 1995, 7: 97-107.
doi: 10.1046/j.1365-313x.1995.07010097.x pmid: 7894514 |
[16] | Chevalier P, Lingle S E. Sugar metabolism in developing kernels of wheat and barley. Crop Sci, 1983, 23: 272-277. |
[17] |
Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet, 1976, 14: 1041-1055.
doi: 10.1007/BF00485135 pmid: 1016220 |
[18] |
Tang G Q, Sturm A.A Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol, 1999, 41: 465-479.
doi: 10.1023/a:1006327606696 pmid: 10608657 |
[19] | Fan C F, Wang G Y, Wang Y M, Zhang R, Wang Y T, Feng S Q, Luo K M, Peng L C. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. Int J Mol Sci, 2019, 20: 4971. |
[20] | Yao D Y, Gonzales-Vigil E, Mansfield S D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem J Exp Bot, 2020, 71: 1858-1869. |
[21] |
Chandran D, Sharopova N, VandenBosch K A, Garvin D F, Samac D A. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol, 2008, 8: 89.
doi: 10.1186/1471-2229-8-89 pmid: 18713465 |
[22] |
Ahmed I M, Nadira U A, Cao F B, He X Y, Zhang G P, Wu F B. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243: 973-985.
doi: 10.1007/s00425-015-2442-x pmid: 26748913 |
[23] | Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61. |
[24] | Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, et al. The wheat sucrose synthase gene TaSus1 is a determinant of grain number per spike. Crop J, 2024, 12: 295-300. |
[25] |
Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918-1929.
doi: 10.1104/pp.113.232454 pmid: 24402050 |
[26] |
Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13: 1733-1751.
doi: 10.1016/j.molp.2020.09.001 pmid: 32896642 |
[27] |
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Elaine Barclay J, Fahy B, Hartley M, Warren F J, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol, 2021, 230: 2371-2386.
doi: 10.1111/nph.17342 pmid: 33714222 |
[28] | Zhang Z F, Tan J X, Chen Y T, Sun Z, Yan X, Ouyang J X, Li S B, Wang X. New fructokinase, OsFRK3, regulates starch accumulation and grain filling in rice. J Agric Food Chem, 2023, 71: 1056-1066. |
[29] |
Fahy B, Gonzalez O, Savva G M, Ahn-Jarvis J H, Warren F J, Dunn J, Lovegrove A, Hazard B A. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Sci Rep, 2022, 12: 10806.
doi: 10.1038/s41598-022-14995-0 pmid: 35752653 |
[30] |
Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H X, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J Exp Bot, 2019, 70: 1497-1511.
doi: 10.1093/jxb/erz032 pmid: 30753656 |
[31] | Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907. |
[32] |
Duncan K A, Hardin S C, Huber S C. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol, 2006, 47: 959-971.
pmid: 16760218 |
[33] |
Pellny T K, Lovegrove A, Freeman J, Tosi P, Love C G, Paul Knox J, Shewry P R, Mitchell R A C. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol, 2012, 158: 612-627.
doi: 10.1104/pp.111.189191 pmid: 22123899 |
[34] |
Enders T A, Strader L C. Auxin activity: past, present, and future. Am J Bot, 2015, 102: 180-196.
doi: 10.3732/ajb.1400285 pmid: 25667071 |
[35] | 于永超.生长素-糖调控水稻弱势粒灌浆的生理机制研究. 南京农业大学硕士学位论文, 江苏南京, 2022. |
Yu Y C. Mechanisms of Indole-3-acetic Acid (IAA) and Sugar Effects on the Inferior Spikelets Filling in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract). | |
[36] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[37] | Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107. |
[38] |
Zhao Z G, Zhang Y H, Liu X, Zhang X, Liu S C, Yu X W, Ren Y L, Zheng X M, Zhou K N, Jiang L, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell, 2013, 27: 113-122.
doi: 10.1016/j.devcel.2013.09.005 pmid: 24094741 |
[39] | Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119. |
[40] |
Grover A, Sharma P C. Development and use of molecular markers: past and present. Crit Rev Biotechnol, 2016, 36: 290-302.
doi: 10.3109/07388551.2014.959891 pmid: 25430893 |
[41] |
Garrido-Cardenas J A, Mesa-Valle C, Manzano-Agugliaro F. Trends in plant research using molecular markers. Planta, 2018, 247: 543-557.
doi: 10.1007/s00425-017-2829-y pmid: 29243155 |
[42] |
Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[43] | Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223. |
[44] | Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330-1342. |
[45] | Zhang Y J, Liu J D, Xia X C, He Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097-1107. |
[46] | 李辛丽.小麦品质性状的QTL定位及优质资源筛选. 四川农业大学硕士学位论文, 四川成都, 2024. |
Li X L. QTL for Wheat Quality Traits and Screening of High-quality Resources. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2024 (in Chinese with English abstract). | |
[47] | 安悦.湖北省小麦的HMW-GS组成及其与品质性状的相关分析. 华中农业大学硕士学位论文. 湖北武汉, 2023. |
An Y. HMW-GS Composition and Its Correlation with Quality Characters of Wheat in Hubei. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract). | |
[48] | 关智仁.小麦品种群体品质性状评价及GWAS分析. 山东农业大学硕士学位论文, 山东泰安, 2022. |
Guan Z R. Evaluation of Quality Traits and Genome-wide Association Study (GWAS) Using Variety Population in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract). |
[1] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[2] | 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849. |
[3] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[4] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[5] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
[6] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[7] | 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886. |
[8] | 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913. |
[9] | 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466. |
[10] | 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664. |
[11] | 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547. |
[12] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[13] | 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557. |
[14] | 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653. |
[15] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
|