欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2307-2317.doi: 10.3724/SP.J.1006.2025.54001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析

朱锦程1(), 杨秋华1, 程李香1, 李文丽2, 石明明3, 李惠霞3,*(), 张峰1,*()   

  1. 1甘肃农业大学农学院 / 省部共建干旱生境作物学国家重点实验室, 甘肃兰州 730070
    2甘肃农业大学园艺学院, 甘肃兰州 730070
    3甘肃农业大学植物保护学院, 甘肃兰州 730070
  • 收稿日期:2024-12-31 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-10
  • 通讯作者: *张峰, E-mail: zhangf@gsau.edu.cn; 李惠霞, E-mail: lihx@gsau.edu.cn
  • 作者简介:E-mail: 2045638880@qq.com
  • 基金资助:
    本研究由甘肃省高等学校产业支撑计划项目(2023CYZC-44);甘肃省高校科研创新平台项目(2024CXPT-01)

Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses

ZHU Jin-Cheng1(), YANG Qiu-Hua1, CHENG Li-Xiang1, LI Wen-Li2, SHI Ming-Ming3, LI Hui-Xia3,*(), ZHANG Feng1,*()   

  1. 1College of Agriculture, Gansu Agricultural University / Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070, Gansu, China
    2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-12-31 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-10
  • Contact: *E-mail: zhangf@gsau.edu.cn; E-mail: lihx@gsau.edu.cn
  • Supported by:
    Gansu Province Higher Education Industry Support Program(2023CYZC-44);Gansu Province University Science and Research Innovation Platform(2024CXPT-01)

摘要: 筛选优异的抗南方根结线虫马铃薯材料, 分析其生理抗性, 为抗南方根结线虫马铃薯品种选育提供理论依据, 丰富抗线虫种质资源。利用根结线虫通用引物D2A/D3B及南方根结线虫特异性引物Inc-K14-F/Inc-K14-R对供试线虫材料进行分子鉴定。54份马铃薯野生种渐渗系和31份普通栽培种通过室内盆栽接种南方根结线虫, 35 d后测定根系南方根结线虫的卵块数量和根结数量, 计算卵块指数(egg index, EI)、根结指数(gall index, GI)及病情指数(disease index, DI), 用于抗病性评价; 初步筛选抗病种质后, 以未接种南方根结线虫的抗(感)材料为对照, 分别在线虫侵入根系的第3天、第7天和第35天, 测定根系木质素、茉莉酸及水杨酸含量, 初步解析抗南方根结线虫马铃薯材料根系的生理反应。结果表明, 85份马铃薯材料根系卵块数量、根结数量、卵块指数和根结指数差异显著, 依病情指数将其分为高抗(1<DI≤2)、中感(4<DI≤5)、感病(5<DI≤6)和高感(DI>6) 4种类型。其中, 野生种渐渗系232-8为高抗材料(DI=1.01); 232-9 (DI=4.02)、315-53 (DI=4.09)和390-10 (DI=4.33)为中感材料; 364-3 (DI=5.17)、19-2 (DI=5.28)、53-1 (DI=5.88)和317-8 (DI=5.88)为感病材料; 其余77份材料为高感材料, DI范围为6.13~74.26, 其中天薯12号的DI最高(74.26)。接种南方根结线虫后, 232-8根系木质素、茉莉酸及水杨酸含量显著高于天薯12号, 其木质素在接种35 d后含量达到最高(476.18 mg g-1), 茉莉酸及水杨酸含量在接种7 d时达到最高, 分别为10.80 ng g-1和1623.15 ng g-1。马铃薯野生种渐渗系232-8为抗南方根结线虫材料, 其根系木质素、茉莉酸及水杨酸含量在线虫侵入后显著升高, 这可能是其形成生理抗性的重要原因。

关键词: 马铃薯, 南方根结线虫, 野生种渐渗系, 抗性筛选, 生理抗性

Abstract:

This study aimed to identify potato germplasm with resistance to Meloidogyne incognita and to analyze their physiological defense responses, thereby providing a theoretical basis for breeding nematode-resistant potato varieties and enriching pest-resistant germplasm resources. Molecular identification of nematodes was performed using the universal primer pair D2A/D3B and the M. incognita-specific primer pair Inc-K14-F/Inc-K14-R. A total of 54 wild potato introgression lines and 31 cultivated varieties were inoculated with M. incognita, and the numbers of egg masses and root galls were recorded 35 days after inoculation. The egg index (EI), gall index (GI), and disease index (DI) were calculated to evaluate resistance. Following preliminary screening, non-inoculated resistant and susceptible materials were used as controls, and the contents of lignin, jasmonic acid (JA), and salicylic acid (SA) in roots were measured at 3, 7, and 35 days post-inoculation to analyze the physiological responses of resistant potato root systems to M. incognita. The results revealed significant variation in egg mass and root gall numbers, EI, and GI among the 85 potato genotypes. Based on DI values, materials were categorized into four resistance levels: highly resistant (1 < DI ≤ 2), moderately susceptible (4 < DI ≤ 5), susceptible (5 < DI ≤ 6), and highly susceptible (DI > 6). The wild introgression line 232-8 was identified as highly resistant (DI = 1.01); lines 232-9 (DI = 4.02), 315-53 (DI = 4.09), and 390-10 (DI = 4.33) were moderately susceptible; while lines 364-3 (DI = 5.17), 19-2 (DI = 5.28), 53-1 (DI = 5.88), and 317-8 (DI = 5.88) were susceptible. The remaining 77 genotypes were highly susceptible, with DI values ranging from 6.13 to 74.26; Tianshu 12 showed the highest DI (74.26). Following M. incognita inoculation, line 232-8 exhibited significantly higher root contents of lignin, JA, and SA compared with Tianshu 12. Lignin content peaked at 35 days post-inoculation (476.18 mg g-1), while JA and SA contents peaked at 7 days (10.80 ng g-1 and 1623.15 ng g-1, respectively). These results suggest that wild potato introgression line 232-8 is resistant to M. incognita, and the significant induction of lignin, JA, and SA following nematode invasion may contribute to its physiological resistance mechanisms.

Key words: potato, Meloidogyne incognita, introgression lines, resistance screening, physiological resistance

表1

供试材料"

序号
Code
材料编号
Material
亲本组合
Parent combination
序号
Code
材料编号
Material
亲本组合
Parent combination
1 140-5 POR00HG5-1×A9085-7 5 179-3 82-4×POROIPG22-1
2 364-7 82-4×PM×03LB16-16 6 315-53 82-4×PORO6PG48-1
3 232-9 PA99N82-4×Artic sd1g 7 232-11 PA99N82-4×Artic sd1g
4 271-6 POR00HG5-1×A9045-7 8 315-56 82-4×PORO6PG48-1
9 232-1 PA99N82-4×Artic sd1g 44 232-8 PA99N82-4×Artic sd1g
10 271-14 POR00HG5-1×A9045-7 45 53-1 PA99N82-4×PA99N12-1
11 271-12 POR00HG5-1×A9045-7 46 390-58 PA99N82-4×Gem russet
12 315-25 82-4×PORO6PG48-1 47 140-3 POR00HG5-1×A9085-7
13 271-7 POR00HG5-1×A9045-7 48 315-28 82-4×PORO6PG48-1
14 315-12 82-4×PORO6PG48-1 49 374-3 82-4×ABA07H
15 374-2 82-4×ABA07H 50 315-6 82-4×PORO6PG48-1
16 140-7 POR00HG5-1×A9085-7 51 179-2 82-4×POROIPG22-1
17 332-18 PA92N5-2×Dto33 52 140-8 POR00HG5-1×A9085-7
18 315-32 82-4×PORO6PG48-1 53 315-44 82-4×PORO6PG48-1
19 271-15 POR00HG5-1×A9045-7 54 315-49 82-4×PORO6PG48-1
20 19-2 PA98N5-2×ABA039 55 1428-1-31 Ranger burbank×0730-180
21 374-3 82-4×ABA07H 56 1428-1-35 Ranger burbank×0730-180
22 19-15 PA98N5-2×ABA039 57 1416-5 大西洋×0730-185 Atlantic×0730-185
23 315-15 82-4×PORO6PG48-1 58 1423-1-8 Burbank×0730-185
24 19-28 PA98N5-2×ABA039 59 1402-1 大西洋×0730-185
Atlantic×0730-185
25 271-8 POR00HG5-1×A9045-7 60 1423-1-20 Burbank×0730-185
26 364-6 82-4×PM×03LB16-16 61 1423-1-9 Burbank×0730-185
27 390-10 PA99N82-4×Gem Russet 62 14231-22 Burbank×0730-185
28 315-51 82-4×PORO6PG48-1 63 1412-1 大西洋×0730-185 Atlantic×0730-185
29 19-20 PA98N5-2×ABA039 64 1428-1-26 Ranger burbank×陇薯7号
Ranger burbank×Longshu 7
30 140-2 POR00HG5-1×A9085-7 65 1425-1-13 Ivory Burbank×陇薯7号
Ivory Burbank×Longshu 7
31 374-8 82-4×ABA07H 66 1422-1-22 Ranger burbank×0730-185
32 364-3 82-4×PM×03LB16-16 67 青薯9号 Qingshu 9 3875213×APHRODITE
33 140-6 POR00HG5-1×A9085-7 68 陇薯15号 Longshu 15 青薯9号×L0202-2
Qingshu 9×L0202-2
34 19-37 PA98N5-2×ABA039 69 天薯10号 Tianshu 10 庄薯3号×郑薯1号
Zhuangshu 3×Zhengshu 1
35 271-13 POR00HG5-1×A9045-7 70 布尔班克 Burbank
36 315-20 82-4×PORO6PG48-1 71 天薯14号 Tianshu 14 陇薯7号×青薯9号
Longshu 7×Qingshu 9
37 313-1 PA99N82-4×Norkotah 72 陇薯10号 Longshu 10 83-33-1×119-8
38 232-2 PA99N82-4×Artic sd1g 73 天薯12号 Tianshu 12 97-8-98×90-10-58-1
39 364-1 82-4×PM×03LB16-16 74 甘农薯9号 Gannongshu 9 大西洋×陇薯7号
Atlantic×Longshu 7
40 315-40 82-4×PORO6PG48-1 75 大西洋 Atlantic B5141-6×Wauseon
41 271-3 POR00HG5-1×A9045-7 76 陇薯14号 Longshu 14 L9712-2×L0202-2
42 374-1 82-4×ABA07H 77 天薯11号 Tianshu 11 天薯7号×庄薯3号
Tianshu 7×Zhuangshu 3
43 317-8 82-4×MY121 78 甘农薯7号Gannongshu 7 大西洋×陇薯7号
Atlantic×Longshu 7
79 定薯4号 Dingshu 4 定薯1号×陇薯5号
Dingshu 1×Longshu 5
83 庄薯3号 Zhuangshu 3 87-46-1×青85-5-1
87-46-1×Qing 85-5-5
80 新大坪
Xindaping
84 定薯6号 Dingshu 6 定薯1号×大西洋
Dingshu 1×Atlantic
81 陇红1号 Longhong 1 991719×991478 85 甘农薯18号
Gannongshu 18
Carminelle×H0940
82 庄薯5号 Zhuangshu 5 庄薯3号×新大坪
Zhuangshu 3×Xindaping

图1

南方根结线虫分子鉴定 M: DL2000 Marker; 泳道1~6为南方根结线虫特异性引物Inc-K14-F/Inc-K14-R的扩增产物; 8~13为根结线虫通用引物D2A/D3B的扩增产物。"

图2

南方根结线虫侵染马铃薯种质表型 红色为次氯酸钠-酸性品红染色后的南方根结线虫卵块。A: 天薯12号; B: 364-3; C: 232-9; D: 232-8。"

表2

接种南方根结线虫后85份马铃薯种质的根系反应"

材料名称
Material name
卵块数量
Number of egg masses
根结数量
Number of root knots
卵粒指数
Egg index
根结指数
Gall index
根鲜重
Fresh root weight
140-5 306.67±15.57 de 72.33±4.04 de 42.06±7.82 de 9.92±1.19 de 7.29±0.10 cd
364-7 225.33±28.57 fg 48.67±13.20 ef 30.45±4.64 ef 6.58±2.44 ef 7.40±0.30 cd
232-9 26.33±12.42 ig 17.33±5.51 f 3.35±1.06 i 2.21±2.49 f 7.85±0.18 bc
271-6 195.67±35.13 fg 48.33±5.03 ef 25.71±3.29 fg 6.35±1.54 ef 7.61±0.26 bc
179-3 272.33±6.66 ef 69.00±2.64 de 36.80±7.42 def 9.32±1.76 de 7.40±0.10 cd
315-53 24.00±2.16 hi 19.66±4.04 f 3.17±1.68 hi 2.59±0.35 f 7.58±0.19 bc
232-11 217.33±17.21 fg 33.67±3.21 f 28.94±3.67 f 4.50±0.23 f 7.51±0.01 cd
315-56 239.00±15.10 f 95.33±3.06 cd 32.34±4.33 ef 12.90±2.42 cd 7.39±0.22 cd
232-1 218.33±18.45 fg 63.67±3.21 f 29.38±6.71 f 8.98±0.69 e 7.43±0.42 cd
271-14 180.33±10.60 g 53.33±7.64 ef 23.54±4.43 fg 6.96±0.81 ef 7.66±0.29 bc
271-12 216.33±9.50 fg 56.33±6.51 ef 27.52±3.42 fg 6.12±2.39 ef 7.86±0.41 bc
315-25 282.33±27.61 ef 77.33±8.50 de 38.78±4.16 de 9.78±0.40 de 7.28±0.09 bc
271-7 268.33±14.84 ef 82.33±10.02 de 35.35±7.33 ef 12.51±1.68 de 7.59±0.09 bc
315-12 145.00±17.78 gh 44.33±2.89 ef 18.78±2.81 gh 6.69±1.04 ef 7.72±0.28 bc
374-2 41.00±8.36 hi 29.00±1.73 f 5.33±1.22 hi 3.77±0.64 f 7.69±0.25 bc
140-7 239.00±27.78 f 52.33±14.50 ef 32.78±5.01 ef 6.79±1.17 ef 7.29±0.20 cd
332-18 189.00±5.29 fg 70.00±3.00 de 24.20±6.59 fg 8.66±1.09 de 7.81±0.10 bc
315-32 287.67±54.65 ef 53.33±4.16 ef 38.15±7.55 de 6.65±1.49 ef 7.54±0.41 bc
271-15 262.67±13.32 ef 75.00±20.07 de 35.59±7.71 ef 10.53±2.08 de 7.38±0.23 cd
19-2 37.67±9.02 h 10.67±6.11 f 5.08±1.07 gh 1.44±0.30 f 7.41±0.35 cd
374-5 186.33±10.41 fg 43.67±10.97 ef 25.35±4.47 fg 5.81±1.30 ef 7.35±0.28 cd
19-15 203.33±11.93 fg 74.00±4.58 de 27.37±4.72 fg 9.77±2.91 de 7.43±0.23 cd
315-15 286.00±29.51 ef 81.33±2.08 de 38.86±3.72 de 8.17±2.36 de 7.36±0.16 cd
19-28 223.00±29.61 fg 57.67±8.62 ef 29.69±4.64 f 7.46±1.13 ef 7.51±0.11 cd
271-8 170.67±16.04 gh 45.00±4.00 ef 23.25±2.63 fg 5.05±0.86 ef 7.34±0.28 cd
364-6 146.33±24.66 gh 42.67±11.02 ef 19.41±3.25 gh 4.22±1.33 ef 7.54±0.07 bc
390-10 30.67±7.90 hi 15.33±6.51 ef 3.87±5.76 hi 1.94±0.22 f 7.92±0.10 b
315-51 274.00±38.70 ef 89.33±0.58 de 36.39±6.66 ef 12.69±2.24 de 7.53±0.23 bcd
19-20 312.67±66.01 de 114.67±26.76 cd 42.31±6.16 de 13.14±2.94 cd 7.39±0.10 cd
140-2 274.00±26.00 ef 74.00±12.77 de 35.31±4.45 ef 9.04±1.65 de 7.76±0.14 bc
374-8 268.00±9.54 ef 151.00±34.04 b 37.07±5.73 def 15.19±1.56 ab 7.23±0.15 cd
364-3 34.00±6.68 hi 19.67±2.39 ef 4.47±1.73 gh 2.59±0.17 ef 7.60±0.10 bc
140-6 101.33±18.15 hi 26.67±4.16 f 12.99±2.01 h 6.53±0.87 f 7.80±0.10 bc
19-37 156.33±17.10 gh 63.00±29.82 e 21.21±3.80 g 9.10±1.56 e 7.37±0.21 cd
271-13 176.67±29.53 g 37.67±5.13 ef 24.78±4.85 fg 6.48±0.37 ef 7.13±0.06 d
315-20 380.67±57.62 cd 135.67±18.72 bc 49.96±7.35 cd 20.06±0.83 bc 7.62±0.31 bc
313-1 390.00±41.73 cd 94.33±39.83 cd 50.39±7.68 cd 9.56±1.60 de 7.74±0.14 bc
232-2 289.67±26.01 ef 72.00±23.52 de 36.99±6.61 def 12.66±2.07 de 7.83±0.06 bc
364-1 253.00±29.05 ef 55.00±12.12 ef 34.80±6.31 ef 7.51±0.67 ef 7.27±0.16 cd
315-40 204.67±14.01 fg 73.33±7.37 de 27.00±5.92 fg 9.69±1.18 de 7.58±0.26 bc
271-3 196.00±42.93 fg 55.00±12.12 ef 26.67±5.94 fg 6.46±1.67 ef 7.35±0.25 cd
374-1 219.67±57.07 fg 66.33±20.60 de 29.57±6.42 f 8.32±3.60 de 7.43±0.23 cd
317-8 36.67±5.13 h 19.00±2.21 f 5.22±4.79 gh 2.71±0.48 f 7.02±0.08 d
232-8 1.00±0.00 j 7.33±1.53 f 0.14±0.00 i 1.16±0.19 f 7.35±0.14 cd
53-1 32.00±2.65 i 25.00±7.00 f 4.27±1.67 hi 3.33±0.33 f 7.50±0.10 cd
390-58 194.33±20.03 fg 22.67±2.08 f 26.15±3.48 fg 3.62±0.89 f 7.43±0.21 cd
140-3 187.67±8.08 fg 51.00±14.18 ef 25.43±3.58 fg 8.60±0.91 ef 7.38±0.07 cd
315-28 349.33±26.10 d 69.00±2.65 de 47.40±7.59 cd 6.88±0.50 de 7.37±0.23 cd
374-3 180.00±28.02 g 40.00±5.00 ef 23.56±3.51 fg 6.75±0.58 ef 7.64±0.25 bc
315-6 213.33±12.01 fg 56.33±6.81 ef 25.64±3.53 fg 7.57±1.49 ef 8.32±0.21 ab
179-2 42.67±22.03 hi 17.33±15.04 ef 5.68±1.43 h 2.31±0.44 ef 7.51±0.53 cd
140-8 302.33±20.50 de 92.00±2.00 d 41.36±5.04 d 11.95±2.85 cd 7.31±0.53 cd
315-44 232.33±51.54 fg 125.67±29.96 bc 33.19±5.09 ef 33.93±2.85 bc 7.00±0.89 d
315-49 187.33±38.28 fg 132.00±20.07 bc 24.78±3.82 fg 16.02±2.50 bc 7.56±0.65 bc
1428-1-31 400.33±31.92 cd 86.67±13.65 de 55.22±6.72 c 9.58±2.40 de 7.25±0.15 cd
1416-5 294.00±17.09 e 104.33±18.93 cd 38.68±6.42 de 13.97±5.93 cd 7.60±0.17 bc
1428-1-35 477.00±19.08 b 109.67±27.06 cd 64.46±8.14 b 14.2±5.85 cd 7.40±0.36 cd
1423-1-8 358.67±29.40 cd 90.67±27.32 de 48.47±5.85 c 10.57±4.24 d 7.40±0.26 cd
1402-1 198.00±38.35 fg 66.33±19.69 de 26.76±5.41 fg 8.06±4.78 de 7.40±0.17 cd
1423-1-20 88.00±23.90 hi 42.00±16.09 ef 11.34±1.79 h 3.96±1.98 ef 7.76±0.20 bc
1423-1-9 410.67±23.86 c 111.00±28.48 cd 53.75±7.20 c 13.95±3.65 cd 7.64±0.14 bc
1422-1-22 333.33±40.87 ef 82.33±24.09 de 45.17±7.56 e 10.19±4.34 de 7.38±0.04 c
1412-1 270.33±29.67 ef 75.33±14.21 de 35.15±5.15 ef 8.91±3.94 de 7.69±0.11 bc
1428-1-26 319.33±22.19de 98.33±17.01cd 42.13±5.69de 13.47±4.73cd 7.58±0.10bc
1425-1-13 260.33±24.58 ef 79.67±15.63 de 33.99±5.64 ef 9.33±1.73 de 7.66±0.15 bc
1422-1-22 213.67±28.43 ef 71.00±11.00 de 27.82±4.40 e 8.54±3.90 de 7.68±0.25 c
甘农薯18号Gannongshu 18 188.67±15.02 fg 74.00±23.58 de 24.40±3.60 fg 10.05±2.26 de 7.73±0.16 bc
布尔班克Burbank 226.00±11.53 fg 73.67±7.37 de 29.35±3.41 fg 8.84±0.66 de 7.70±0.25 bc
天薯14号Tianshu 14 496.33±25.01 ab 141.00±43.09 bc 63.71±8.58 ab 15.50±1.14 bc 7.79±0.25 bc
陇薯10号Longshu 10 516.00±42.04 ab 181.33±22.68 a 68.89±9.94 a 23.54±2.34 a 7.49±0.26 cd
天薯12号Tianshu 12 540.00±34.39 a 171.67±14.01 b 70.77±10.46 a 20.90±2.93 b 7.63±0.19 bc
甘农薯9号Gannongshu 9 507.33±19.60 ab 165.67±22.12 ab 65.89±8.15 ab 20.74±3.67 ab 7.70±0.18 bc
大西洋Atlantic 287.00±28.05 ef 75.67±9.29 de 38.06±7.50 de 9.52±1.32 de 7.54±0.04 bc
陇薯14号Longshu 14 387.67±24.82 cd 102.67±13.61 cd 52.53±9.94 cd 13.74±2.75 cd 7.38±0.10 cd
天薯11号Tianshu 11 451.00±16.52 bc 164.00±17.78 ab 58.65±9.56 bc 20.26±1.06 ab 7.69±0.18 bc
甘农薯7号Gannongshu 7 272.33±40.67 ef 85.00±18.00 de 37.10±7.24 ef 11.05±1.83 de 7.34±0.15 cd
定薯4号Dingshu 4 359.33±36.07 cd 114.00±16.64 cd 20.34±4.38 cd 14.46±1.42 cd 7.82±0.13 bc
新大坪Xindaping 323.67±28.73 de 121.33±17.56 c 38.53±5.45 de 16.26±1.02 c 7.46±0.29 cd
陇红1号Longhong 1 385.00±32.51 cd 104.00±14.93 cd 43.70±5.27 c 12.16±5.19 cd 8.55±0.22 a
庄薯5号Zhuangshu 5 319.33±32.87 de 101.00±25.87 cd 37.13±4.20 de 12.64±6.34 cd 8.60±0.36 a
青薯9号Qingshu 9 156.00±50.00 gh 77.67±19.66 de 20.34±4.22 g 12.12±5.67 de 7.67±0.15 bc
庄薯3号Zhuangshu 3 296.67±35.50 de 96.00±19.00 cd 38.53±5.14 ef 12.47±1.17 de 7.70±0.10 bc
陇薯15号Longshu 15 326.00±40.73 de 114.33±20.26 cd 43.70±6.85 de 15.32±1.67 cd 7.46±0.29 cd
定薯6号Dingshu 6 294.00±38.16 e 85.33±9.09 de 39.25±6.74 de 11.39±2.04 de 7.49±0.16 cd
天薯10号Tianshu 10 376.67±38.53 cd 118.67±14.84 cd 49.50±6.90 cd 15.58±2.70 cd 7.61±0.30 bc

图3

马铃薯材料对南方根结线虫的病情指数"

图4

马铃薯根系的木质素及激素含量 S: 天薯12号; R: 232-8。小写字母表示接种南方根结线虫后2份材料及不同时期根系的木质素及激素含量在0.05概率水平差异显著。"

[1] Manrique L A. Constraints for potato production in the tropics. J Plant Nutr, 1993, 16: 2075-2120.
[2] Berg R H, Fester T, Taylor C G. Development of the root-knot nematode feeding cell. Cell Biology of Plant Nematode Parasitism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. pp 115-152.
[3] Stucky T, Dahlin P. Fluopyram: optimal application time point and planting hole treatment to control Meloidogyne incognita. Agronomy, 2022, 12: 1576.
[4] Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. Plant Cell, 1996, 8: 1735-1745.
doi: 10.1105/tpc.8.10.1735 pmid: 8914324
[5] Khanam S, Bauters L, Singh R R, Verbeek R, Haeck A, Sultan S M D, Demeestere K, Kyndt T, Gheysen G. Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode Ditylenchus angustus. Mol Plant Pathol, 2018, 19: 1391-1402.
[6] Bonello P, Blodgett J T. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol, 2003, 63: 249-261.
[7] Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X B, Zhao P X, Dixon R A. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010, 11: 829-846.
doi: 10.1111/j.1364-3703.2010.00648.x pmid: 21029326
[8] Grant M R, Jones J D G. Hormone (dis)harmony moulds plant health and disease. Science, 2009, 324: 750-752.
doi: 10.1126/science.1173771 pmid: 19423816
[9] Pieterse C M J, Leon-Reyes A, Van der Ent S, Van Wees S C M. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308-316.
doi: 10.1038/nchembio.164 pmid: 19377457
[10] Foroud N A, Ouellet T, Laroche A, Oosterveen B, Jordan M C, Ellis B E, Eudes F. Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathol, 2012, 61: 296-314.
[11] Züst T, Agrawal A A. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol, 2017, 68: 513-534.
doi: 10.1146/annurev-arplant-042916-040856 pmid: 28142282
[12] 武超, 刘贤文, 张炜, 王琼, 郭华春. 马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果. 作物学报, 2020, 46: 1456-1463.
doi: 10.3724/SP.J.1006.2020.94191
Wu C, Liu X W, Zhang W, Wang Q, Guo H C. Control effects of different potato varieties (lines) and rice-potato rotation system on root-knot nematode. Acta Agron Sin, 2020, 46: 1456-1463 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.94191
[13] van der Vossen E, Sikkema A, te Lintel Hekkert B, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J, 2003, 36: 867-882.
doi: 10.1046/j.1365-313x.2003.01934.x pmid: 14675451
[14] 王江岭, 张建成, 顾建锋. 单条线虫DNA提取方法. 植物检疫, 2011, 25(2): 32-35.
Wang J L, Zhang J C, Gu J F. Method of extract DNA from a single nematode. Plant Quar, 2011, 25(2): 32-35 (in Chinese with English abstract).
[15] Randig O, Bongiovanni M, Carneiro R M D G, Castagnone- Sereno P. Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 2002, 45: 862-870.
doi: 10.1139/g02-054 pmid: 12416618
[16] 中华人民共和国农业行业标准, 中华人民共和国农业农村部. 马铃薯抗南方根结线虫病鉴定技术规程: NY/T 3623—2020. 北京: 中国农业出版社, 2020.
Agricultural Industry Standards of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical Regulations for Identification of Potato Resistance to Southern Root-knot Nematode Disease:NY/T 3623—2020. Beijing: China Agriculture Press, 2020 (in Chinese).
[17] Bybd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol, 1983, 15: 142-143.
pmid: 19295781
[18] Powell N T. Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi. Phytopathology, 1971, 61: 1332.
[19] Janssen G J W, Van Norel A, Verkerk-Bakker B, Janssen R. Intra-and interspecific variation of root-knot nematodes, Meloidogyne spp., with regard to resistance in wild tuber-bearing Solanum species. Fundam Appl Nematol, 1997, 20: 449-458.
[20] Holbein J, Grundler F M W, Siddique S. Plant basal resistance to nematodes: an update. J Exp Bot, 2016, 67: 2049-2061.
doi: 10.1093/jxb/erw005 pmid: 26842982
[21] Zhao J L, Mejias J, Quentin M, Chen Y P, de Almeida-Engler J, Mao Z C, Sun Q H, Liu Q, Xie B Y, Abad P, et al. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. New Phytol, 2020, 228: 1417-1430.
[22] Fairfax K C, Vermeire J J, Harrison L M, Bungiro R D, Grant W, Husain S Z, Cappello M. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int J Parasitol, 2009, 39: 1561-1571.
doi: 10.1016/j.ijpara.2009.06.005 pmid: 19591834
[23] Boiteux L S, Charchar J M. Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed, 1996, 115: 198-200.
[24] Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz S B. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One, 2013, 8: e64586.
[25] Jagdale S, Rao U, Giri A P. Effectors of root-knot nematodes: an arsenal for successful parasitism. Front Plant Sci, 2021, 12: 800030.
[26] Zhang J, Zhou J M. Plant immunity triggered by microbial molecular signatures. Mol Plant, 2010, 3: 783-793.
doi: 10.1093/mp/ssq035 pmid: 20713980
[27] Nguyen Q M, Iswanto A B B, Son G H, Kim S H. Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. Int J Mol Sci, 2021, 22: 4709.
[28] Prior A, Jones J T, Blok V C, Beauchamp J, McDermott L, Cooper A, Kennedy M W. A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochem J, 2001, 356: 387-394.
doi: 10.1042/0264-6021:3560387 pmid: 11368765
[29] Liu L J, Sonbol F M, Huot B, Gu Y N, Withers J, Mwimba M, Yao J, He S Y, Dong X N. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun, 2016, 7: 13099.
doi: 10.1038/ncomms13099 pmid: 27725643
[30] Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics, 2015, 16: 272.
doi: 10.1186/s12864-015-1426-3 pmid: 25886179
[31] Abad P, Favery B, Rosso M N, Castagnone-Sereno P. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol, 2003, 4: 217-224.
doi: 10.1046/j.1364-3703.2003.00170.x pmid: 20569382
[32] Macharia T N, Bellieny-Rabelo D, Moleleki L N. Transcriptome profiling of potato (Solanum tuberosum L.) responses to root-knot nematode (Meloidogyne javanica) infestation during a compatible interaction. Microorganisms, 2020, 8: 1443.
[1] 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546.
[2] 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411.
[3] 贾小霞, 齐恩芳, 文国宏, 马胜, 黄伟, 吕和平, 李建武, 曲亚英, 丁宁. 中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制[J]. 作物学报, 2025, 51(9): 2285-2294.
[4] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[5] 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735.
[6] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
[7] 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420.
[8] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[9] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[10] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[11] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[12] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
[13] 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393.
[14] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[15] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!