欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2285-2294.doi: 10.3724/SP.J.1006.2025.54024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制

贾小霞1,2(), 齐恩芳1,2, 文国宏1,2,*(), 马胜1,2, 黄伟1,2, 吕和平1,2, 李建武1,2, 曲亚英1,2, 丁宁1,2   

  1. 1甘肃省农业科学院马铃薯研究所 / 甘肃省马铃薯种质资源创新工程实验室, 甘肃兰州 730070
    2国家种质资源渭源观测实验站, 甘肃渭源 748201
  • 收稿日期:2025-02-18 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-23
  • 通讯作者: *文国宏, E-mail: 251580436@qq.com
  • 作者简介:E-mail: 289192272@qq.com
  • 基金资助:
    本研究由甘肃省创新驱动助力工程项目(GXH20250325-3);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09-P06);甘肃省农业科学院生物技术育种专项(2025GAAS15);中央引导地方科技发展资金项目(25ZYJA002-2)

Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’

JIA Xiao-Xia1,2(), QI En-Fang1,2, WEN Guo-Hong1,2,*(), MA Sheng1,2, HUANG Wei1,2, LYU He-Ping1,2, LI Jian-Wu1,2, QU Ya-Ying1,2, DING Ning1,2   

  1. 1Potato Research Institute of Gansu Academy of Agricultural Sciences / Gansu Engineering Laboratory of Potato Germplasm resources Innovation, Lanzhou 730070, Gansu, China
    2National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu, China
  • Received:2025-02-18 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-23
  • Contact: *E-mail: 251580436@qq.com
  • Supported by:
    Gansu Province Innovation-Driven Assistance Project(GXH20250325-3);China Agriculture Research System of MOF and MARA(CARS-09-P06);Special Project of Biotechnology Breeding of Gansu Academy of Agricultural Sciences(2025GAAS15);Project of the Central Government-Guided Local Science and Technology Development Funds(25ZYJA002-2)

摘要:

为建立中早熟菜用型马铃薯新品种‘陇薯20号’的高效再生体系、创制抗草铵膦新种质, 本研究通过系统分析试管苗茎段在添加不同浓度及其配比6-BA、NAA和GA3的MS培养基上的胚性愈伤诱导效率与芽再生能力发现, 在MS+1.0 mg L-1 6-BA+0.5 mg L-1 NAA+4.5 mg L-1 GA3+3%蔗糖的培养基中, 胚性愈伤诱导率(89.83%)与芽分化率(91.81%)最高。利用DNA重组技术构建Bar基因过表达载体, 借助农杆菌介导法转化试管苗茎段, 经2.0 mg L-1 PPT筛选, 成功获得6个独立转化株系。种植转基因及其未转基因对照株系, 在苗期茎叶喷施有效成分1271 g hm-2的市售草铵膦后, 未转基因对照株系9 d内完全枯萎死亡, 而转基因株系均表现出稳定的草铵膦抗性; 成熟期表型分析表明, 转基因株系的单株结薯数、单株产量及主要品质性状呈现不同程度分化, 其中S20-4的单株结薯数、单株产量与块茎淀粉、粗蛋白、还原糖含量等关键品质性状指标均与对照无显著差异, 这说明S20-4在整合草铵膦抗性的同时成功维持受体品种的产量与品质特性。本研究建立的高效再生体系为‘陇薯20号’的遗传改良奠定了基础, 创制的S20-4为抗除草剂高产育种提供了可直接应用的候选株系。

关键词: 马铃薯, 陇薯20号, 再生体系, Bar基因, 草铵膦

Abstract:

To establish an efficient regeneration system for the new early-mid maturing, vegetable-use potato cultivar ‘Longshu 20’ and to develop novel germplasm resistant to glufosinate, we systematically evaluated the embryogenic callus induction efficiency and shoot regeneration capacity of test-tube plantlet stem segments cultured on MS medium supplemented with varying concentrations and combinations of 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), and gibberellic acid (GA3). The highest rates of embryogenic callus induction and shoot differentiation were observed on medium MS + 1.0 mg L-1 6-BA + 0.5 mg L-1 NAA + 4.5 mg L-1 GA3 + 3% sucrose. On day 30, the embryogenic callus induction rate reached 89.83%, while the shoot differentiation rate reached 91.81% by day 45. A Bar gene overexpression vector was constructed using recombinant DNA technology and introduced into stem segments via Agrobacterium-mediated transformation. After selection on MS medium containing 2.0 mg L-1 phosphinothricin (PPT), six independent transgenic lines were successfully obtained. Both transgenic and non-transgenic control lines were grown and treated with commercial glufosinate-ammonium at an active ingredient content of 1271 g hm-2 during the seedling stage. Within 9 days, all non-transgenic control plants had completely withered and died, while all transgenic lines exhibited stable resistance to glufosinate-ammonium. Phenotypic analysis at maturity revealed variation among transgenic lines in terms of tuber number per plant, yield per plant, and key quality traits. Notably, transgenic line S20-4 showed no significant differences from the non-transgenic control in tuber number, yield, or key quality parameters such as starch, crude protein, and reducing sugar content. These results demonstrate that S20-4 successfully integrates glufosinate resistance while concurrently maintaining the yield and quality traits of the recipient cultivar. The efficient regeneration system developed in this study provides a solid foundation for the genetic improvement of ‘Longshu 20’, and the transgenic line S20-4 represents a promising candidate for direct application in breeding programs targeting herbicide resistance and high yield.

Key words: potato, Longshu 20, regeneration system, Bar gene, glyphosate

表1

再生培养基组分及配比"

培养基编号
Medium number
基础培养基
Basic medium
6-苄基腺嘌呤
6-BA (mg L-1)
萘乙酸
NAA (mg L-1)
赤霉素
GA3 (mg L-1)
A MS 1.00 0.25 2.00
B MS 2.00 0.25 4.50
C MS 3.00 0.25 7.00
D MS 1.00 0.50 4.50
E MS 2.00 0.50 7.00
F MS 3.00 0.50 2.00
G MS 1.00 0.75 7.00
H MS 2.00 0.75 2.00
I MS 3.00 0.75 4.50

图1

中间载体pBI121、pAHC25和植物表达载体pBI121-Pro35S-Bar示意图 图中ColE1 ori: 大肠杆菌E1质粒复制起点; CaMV35S: 花椰菜花叶病毒35S启动子; gusA: β-葡萄糖苷酸酶基因; NOS-ter: 胭脂碱合成酶基因终止子; Promoter: 泛素启动子; GUS: β-葡萄糖苷酸酶基因; NOS 3': 胭脂碱合成酶基因3'非翻译区; BAR: 双丙氨膦抗性基因; pUCB: pUC 骨架; ori V: 营养复制起点。"

表2

不同培养基上愈伤组织和不定芽诱导分析"

培养基编号
Medium number
外植体数
Number of explants
培养15 d时愈伤组织诱导率
Induction rate of callus tissue after 15 days of cultivation (%)
培养30 d时胚型愈伤组织诱导率
Induction rate of embryogenic
callus tissue after 30 days of
cultivation (%)
培养45 d时胚性愈伤不定芽诱导率
Induction rate of adventitious buds from embryogenic callus after 45 days of cultivation (%)
A 113 45.61±1.21 d 18.16±0.73 d 0.00±0.00 d
B 117 66.56±1.14 c 9.64±0.83 e 8.96±1.23 c
C 111 25.48±0.89 f 0.00±0.00 g
D 115 92.50±1.03 a 89.83±0.98 a 91.81±2.14 a
E 113 43.57±1.23 d 21.23±0.87 c 0.00±0.00 d
F 114 27.14±0.97 f 0.00±0.00 g
G 116 32.28±1.06 e 6.64±0.96 f 0.00±0.00 d
H 118 46.83±0.89 d 17.05±0.86 d 0.00±0.00 d
I 114 77.78±1.17 b 48.45±0.95 b 16.23±1.96 b

图2

S20愈伤诱导及PPT抗性苗筛选 培养基的组份及配比同表1。PPT: 草丁膦; A、B分别为在培养基D、E上培养35 d时的愈伤组织; C为含2.0 mg L-1 PPT筛选培养基上S20试管苗茎段转化再生苗; D、E分别为含2.0 mg L-1 PPT培养基上未转基因S20及其转Bar基因株系试管苗。"

图3

植物表达载体pBI121-Pro35S-Bar酶切鉴定 M: Marker III; 1、2分别为EcoR I/Hind III和BamH I/Hind III双酶切阳性质粒产物。"

图4

转化株系PCR鉴定及其Bar基因表达分析 A: PPT抗性转化株系及其对照PCR分析, 图中M为200 bp DNA Ladder, CK为阴性对照, 1~6为6个不同的转基因株系; B: 不同转基因株系中Bar基因表达分析, 图中S20-1、S20-2、S20-3、S20-4、S20-5、S20-6为6个不同的转基因株系, 不同小写字母表示各株系在P < 0.05水平差异显著。"

图5

S20转基因及其未转基因对照草铵膦抗性分析 A、B分别为喷施草铵膦后0 d和9 d时S20植株; C、D分别为喷施草铵膦后0 d和9 d时S20转Bar基因株系; E为田间试验喷施清水的对照; F、G均为田间试验喷施草铵膦后9 d时大区和小区的田间景象; H为喷施草铵膦后20 d时田间景象。"

表3

S20及其转Bar基因株系块茎品质及单株产量分析"

株系
名称
Name of strains
干物质含量
Content of
dry matter (%)
淀粉含量
Content of
starch (%)
粗蛋白含量
Content of crude protein (%)
还原糖含量
Content of
reduced sugar (%)
维生素C含量Content of vitamin C
(mg 100-1 g-1)
单株结薯数
Number of tubers per plant
单株产量
Yield of per
plant (g)
S20 17.80±1.24 ab 11.79±1.03 a 2.17±0.11 a 0.21±0.03 c 11.80±0.26 a 4.29±0.12 a 627.26±14.96 a
S20-1 17.34±0.97 ab 12.03±0.98 a 2.18±0.12 a 0.24±0.05 c 10.69±0.45 a 3.12±0.09 e 475.07±12.62 b
S20-2 15.06±1.02 b 11.96±1.32 a 2.21±0.06 a 0.48±0.02 a 11.02±0.69 a 3.98±0.15 b 509.94±21.07 b
S20-3 18.90±1.56 a 10.89±1.01 a 2.13±0.09 a 0.36±0.03 b 10.67±1.02 a 3.69±0.03 bc 391.78±18.74 c
S20-4 17.65±0.89 ab 11.98±0.89 a 2.23±0.10 a 0.22±0.02 c 11.96±0.98 a 4.33±0.08 a 635.12±21.04 a
S20-5 16.89±1.96 b 12.21±0.93 a 2.21±0.09 a 0.39±0.06 b 11.06±1.32 a 3.73±0.14 b 321.46±19.64 d
S20-6 16.07±1.47 b 11.32±0.93 a 2.15±0.07 a 0.37±0.05 b 10.78±1.23 a 3.48±0.18 cd 311.46±17.57 d
[1] Paul S, Farooq M, Bhattacharya S S, Gogoi N. Management strategies for sustainable yield of potato crop under high temperature. Arch Agron Soil Sci, 2017, 63: 276-287.
[2] 程亮. 青海省部分地区马铃薯Y病毒cp基因序列分析. 浙江农业学报, 2019, 31: 1888-1895.
doi: 10.3969/j.issn.1004-1524.2019.11.15
Cheng L. Analysis on cp gene sequences of potato virus Y from some places in Qinghai province. Acta Agric Zhejiangensis, 2019, 31: 1888-1895 (in Chinese with English abstract).
[3] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 990-1015 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.06.003
[4] 王宽, 祁利潘, 吴桂丽, 冯琰, 王磊, 尹江, 罗亚婷, 王燕, 刘畅, 龚学臣, 等. 中早熟马铃薯新品种‘北方 002’. 园艺学报, 2022, 49(增刊2): 141-142.
Wang K, Qi L P, Wu G L, Feng Y, Wang L, Yin J, Luo Y T, Wang Y, Liu C, Gong X C, et al. A new potato cultivar ‘Beifang 002’ of early maturity and good yield. Acta Hortic Sin, 2022, 49(S2): 141-142 (in Chinese with English abstract).
[5] 曲亚英, 白永杰, 李掌, 郑永伟, 文国宏, 李高峰, 齐恩芳, 李建武, 张荣, 马胜, 等. 马铃薯新品种陇薯20号的选育. 中国蔬菜, 2022, (9): 97-99.
Qu Y Y, Bai Y J, Li Z, Zheng Y W, Wen G H, Li G F, Qi E F, Li J W, Zhang R, Ma S, et al. A new potato variety—‘Longshu 20’. China Veg, 2022, (9): 97-99 (in Chinese with English abstract).
[6] 闫雷, 张远学, 邹莹, 张宏, 肖春芳, 王甄, 高剑华, 沈艳芬. 2020年全国马铃薯主产区田间杂草分布及除草剂使用调研分析. 黑龙江哈尔滨: 黑龙江科学技术出版社, 2021. pp 490-491.
Yan L, Zhang Y X, Zou Y, Zhang D H, Xiao C F, Wang Z, Gao J H, Shen Y F. Analysis of the Survey on the Distribution of Field Weeds and Herbicide Usage in the Main Potato Producing Areas of China in 2020. Harbin: Heilongjiang Science and Technology Press, 2021. pp 490-491 (in Chinese).
[7] 王喜刚, 郭成瑾, 庞全武, 张丽荣, 沈瑞清. 不同除草剂防除马铃薯田杂草效果及安全性评价. 宁夏农林科技, 2019, 60(7): 21-24.
Wang X G, Guo C J, Pang Q W, Zhang L R, Shen R Q. Assessment of effects and safety of different herbicides in controlling of weeds in potato fields. Ningxia J Agric For Sci Technol, 2019, 60(7): 21-24 (in Chinese with English abstract).
[8] Mayerová M, Madaras M, Soukup J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Prot, 2018, 114: 215-222.
[9] 李云河, 李香菊, 彭于发. 转基因耐除草剂作物的全球开发与利用及在我国的发展前景和策略. 植物保护, 2011, 37(6): 32-37.
Li Y H, Li X J, Peng Y F. Global development of herbicide- tolerant transgenic crops and a strategic prospect for China. Plant Prot, 2011, 37(6): 32-37 (in Chinese with English abstract).
[10] 苏少泉. 中国马铃薯生产与除草剂使用. 世界农药, 2009, 31(1): 4-6.
Su S Q. Potato production and herbicide use in China. World Pestic, 2009, 31(1): 4-6 (in Chinese with English abstract).
[11] Krausz R F, Kapusta G, Matthews J L, Baldwin J L, Maschoff J. Evaluation of glufosinate-resistant corn (Zea mays) and glufosinate: efficacy on annual weeds. Weed Technol, 1999, 13: 691-696.
[12] Sparks C A, Doherty A L H, Rustgi S. Genetic transformation of common wheat (Triticum aestivum L.) using biolistics. In: Biolistic DNA Delivery in Plants, New York, NY: Springer US, 2020. pp 229-250.
[25] Li H Y, Li J Y, Li X, Ye G J, Zhou Y, Wang J. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato. Acta Agron Sin, 2023, 49: 988-995 (in Chinese with English abstract).
[26] 陈兆贵, 林燕文, 李希陶, 温嘉嘉, 林静文. 马铃薯植株再生和遗传转化技术研究进展. 智慧农业导刊, 2023, 3(9): 12-15.
Chen Z G, Lin Y W, Li X T, Wen J J, Lin J W. Research progress of plant regeneration and genetic transformation of potatoes. J Smart Agric, 2023, 3(9): 12-15 (in Chinese with English abstract).
[27] Oxtoby E, Hughes M A. Progress on genetically engineering herbicide-resistance into crops. Biol Engin Prog, 1997, 17: 14-17.
[28] 吴爱忠, 唐克轩, 潘俊松, 蔡润, 沈大棱, 潘重光. 转基因培育抗除草剂水稻. 遗传学报, 2000, 27: 992-998.
Wu A Z, Tang K X, Pan J S, Cai R, Shen D L, Pan C G. Production of herbicide-resistant rice with transforming heterogene. Acta Genet Sin, 2000, 27: 992-998.
[29] Bonny S. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects: a review. Agron Sustain Dev, 2008, 28: 21-32.
[30] Märländer B, Bückmann H. Genetically modified varieties in Germany: status and prospects with special respect of a sustainable sugar beet cultivation. Zuckerind, 1999, 124: 943-946.
[31] Oard J H, Linscombe S D, Braverman M P, Jodari F, Blouin D C, Leech M, Kohli A, Vain P, Cooley J C, Christou P. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996, 2: 359-368.
[32] 强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略. 农业生物技术学报, 2010, 18(1): 114-125.
[13] 陈东亮, 崔翠, 任义英, 王倩, 李加纳, 唐章林, 周清元. 草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析. 作物学报, 2018, 44: 542-553.
doi: 10.3724/SP.J.1006.2018.00542
Chen D L, Cui C, Ren Y Y, Wang Q, Li J N, Tang Z L, Zhou Q Y. Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed under glufosinate stress. Acta Agron Sin, 2018, 44: 542-553 (in Chinese with English abstract).
[14] 王园园, 刘琳莉, 李雷, 戴伟民, 强胜, 宋小玲. 复合性状转cry2A/bar基因水稻T2A-1的生存竞争能力. 南京农业大学学报, 2020, 43: 862-868.
Wang Y Y, Liu L L, Li L, Dai W M, Qiang S, Song X L. Survival competitive ability of stacked transgenic rice T2A-1 with cry2A/bar. J Nanjing Agric Univ, 2020, 43: 862-868 (in Chinese with English abstract).
[15] 崔少彬, 邸宏, 卢翠华, 杨志超, 林忠平, 胡鸢雷. 农杆菌介导ODREB2B基因转化马铃薯的研究. 中国蔬菜, 2009, (16): 20-25.
Cui S B, Di H, Lu C H, Yang Z C, Lin Z P, Hu Y L. Studies on Agrobacterium-mediated transformation of potato with ODREB2B gene. China Veg, 2009, (16): 20-25 (in Chinese with English abstract).
[16] 贾小霞, 齐恩芳, 王一航, 文国宏, 龚成文, 王红梅, 李建武, 马胜, 胡新元. 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014, 23(3): 110-117.
doi: 10.11686/cyxb20140312
Jia X X, Qi E F, Wang Y H, Wen G H, Gong C W, Wang H M, Li J W, Ma S, Hu X Y. Construction of a bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Pratac Sin, 2014, 23(3): 110-117 (in Chinese with English abstract).
[17] 文国宏, 李高峰, 李建武, 张荣, 马胜, 贾小霞. 陇薯系列马铃薯品种营养品质评价及相关性分析. 核农学报, 2018, 32: 2162-2169.
doi: 10.11869/j.issn.100-8551.2018.11.2162
Wen G H, Li G F, Li J W, Zhang R, Ma S, Jia X X. Nutrition quality evaluation and correlation analysis of Longshu potato varieties named with series. J Nucl Agric Sci, 2018, 32: 2162-2169 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2018.11.2162
[18] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013, 27(2): 96-99.
Li Y, Li G C, Li C H, Qu D Y, Huang S W. Prospects of diploid hybrid breeding in potato. Chin Potato J, 2013, 27(2): 96-99 (in Chinese with English abstract).
[19] Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res, 2016, 93: 1-20.
[20] Wang H F, Russa M L, Qi L S. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem, 2016, 85: 227-264.
doi: 10.1146/annurev-biochem-060815-014607 pmid: 27145843
[21] 屈聪玲, 贺榆婷, 王瑞良, 杨致荣, 王兴春. 植物转基因技术的过去、现在和未来. 山西农业科学, 2017, 45: 1376-1380.
Qu C L, He Y T, Wang R L, Yang Z R, Wang X C. The past, present and future of plant transgenic technology. J Shanxi Agric Sci, 2017, 45: 1376-1380 (in Chinese with English abstract).
[22] 王萍, 王罡, 季静. 马铃薯两个基因型不同外植体的组织培养与植株再生. 中国马铃薯, 2006, 20(6): 326-328.
Wang P, Wang G, Ji J. Tissue culture and plant regeneration of various explants of two potato genotypes. Chin Potato J, 2006, 20(6): 326-328 (in Chinese with English abstract).
[23] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析. 作物学报, 2025, 51: 249-259.
Song Q N, Song H Y, Li J H, Duan Y H, Mei C, Feng R Y. Response of transcription factor StFBH3 under abiotic stress in potato. Acta Agron Sin, 2025, 51: 249-259 (in Chinese with English abstract).
[32] Qiang S, Song X L, Dai W M. The opportunity and challenge faced by transgenic herbicide-resistant crops and their development strategy. J Agric Biotechnol, 2010, 18(1): 114-125 (in Chinese with English abstract).
[33] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002 (in Chinese).
[34] 曾凡锁, 詹亚光. 转基因植物中外源基因的整合特性及其研究策略. 植物学通报, 2004, 39: 565-577.
Zeng F S, Zhan Y G. Integration of exogenous genes in transgenic plant genomes: characteristics and approaches. Chin Bull Bot, 2004, 39: 565-577 (in Chinese with English abstract).
[35] Kumar S, Fladung M. Gene stability in transgenic aspen (Populus): II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 2001, 213: 731-740.
pmid: 11678277
[36] Cao X L, Zhang Y T, Payer L M, Lords H, Steranka J P, Burns K H, Xing J C. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol, https://doi.org/10.1186/s13059-020-02101-4.
[37] 赵海祯, 梁哲军, 齐宏立, 王玉香, 聂安全, 吴秀峰. 外源基因对棉花光合生产和分配的影响. 华北农学报, 2005, 20 (1): 41-45.
doi: 10.3321/j.issn:1000-7091.2005.01.010
Zhao H Z, Liang Z J, Qi H L, Wang Y X, Nie A Q, Wu X F. Effects on production and distribution of photosynthate of external gene to cottons. Acta Agric Boreali-Sin, 2005, 20(1): 41-45 (in Chinese with English abstract).
[38] Bao Y, Liu R J, Li Y B, Wang Y, Gao G J, Zhang Q G, Liu X, Jiang G H, He Y Q. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breed Sci, 2014, 64: 231-239.
[24] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性. 作物学报, 2023, 49: 3007-3016.
doi: 10.3724/SP.J.1006.2023.34015
Gong H L, Lin H X, Ren X L, Li T, Wang C X, Bai J P. StvacINV1 negatively regulates drought tolerance in potato. Acta Agron Sin, 2023, 49: 3007-3016 (in Chinese with English abstract).
[25] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响. 作物学报, 2023, 49: 988-995.
doi: 10.3724/SP.J.1006.2023.24082
[39] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.
[40] 贾小霞, 齐恩芳, 马胜, 胡新元, 王一航, 文国宏, 龚成文, 李建武. 转DREB1A/Bar双价基因马铃薯的耐旱性及除草剂抗性分析. 草业学报, 2015, 24(11): 58-64.
doi: 10.11686/cyxb2014533
Jia X X, Qi E F, Ma S, Hu X Y, Wang Y H, Wen G H, Gong C W, Li J W. Analysis of drought tolerance and herbicide resistance in over-expressing DREB1A/Bar transgenic potato. Acta Pratac Sin, 2015, 24(11): 58-64 (in Chinese with English abstract).
[41] 贾小霞, 马胜, 齐恩芳, 吕和平, 刘石, 黄伟, 李掌, 曲亚英. 不同除草剂对转Bar基因马铃薯田间杂草的防效及安全性分析. 核农学报, 2022, 36: 1026-1033.
doi: 10.11869/j.issn.100-8551.2022.05.1026
Jia X X, Ma S, Qi E F, Lyu H P, Liu S, Huang W, Li Z, Qu Y Y. Safety assessment of different herbicides to Bar-transgenic potato and control effect on field weeds. J Nucl Agric Sci, 2022, 36: 1026-1033 (in Chinese with English abstract).
[1] 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546.
[2] 朱锦程, 杨秋华, 程李香, 李文丽, 石明明, 李惠霞, 张峰. 马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析[J]. 作物学报, 2025, 51(9): 2307-2317.
[3] 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411.
[4] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[5] 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735.
[6] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
[7] 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420.
[8] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[9] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[10] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[11] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[12] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
[13] 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393.
[14] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[15] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!