欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2836-2842.doi: 10.3724/SP.J.1006.2025.51030

• 研究简报 • 上一篇    

小麦锰锌吸收累积对锌肥的响应

王子琳1(), 关裴奕1, 黄翠1, 陈键1, 方佳创1, 刘晨瑞1, 郭章玺1, 王梓鸣1, 王朝辉1,2, 刘金山1,2, 田汇1,2, 石美1,2,*()   

  1. 1西北农林科技大学资源环境学院 / 农业农村部西北植物营养与农业环境重点实验室, 陕西杨凌 712100
    2西北农林科技大学作物抗逆与高效生产全国重点实验室, 陕西杨凌 712100
  • 收稿日期:2025-03-15 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-25
  • 通讯作者: *石美, E-mail: meishi@nwafu.edu.cn
  • 作者简介:E-mail: 15129070882@163.com
  • 基金资助:
    国家自然科学基金项目(42377034);国家重点研发计划项目(2022YFD1900702);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03)

Responses of uptake and accumulation of manganese and zinc in wheat to zinc fertilization

WANG Zi-Lin1(), GUAN Pei-Yi1, HUANG Cui1, CHEN Jian1, FANG Jia-Chuang1, LIU Chen-Rui1, GUO Zhang-Xi1, WANG Zi-Ming1, WANG Zhao-Hui1,2, LIU Jin-Shan1,2, TIAN Hui1,2, SHI Mei1,2,*()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2025-03-15 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-25
  • Contact: *E-mail: meishi@nwafu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(42377034);National Key Research and Development Program of China(2022YFD1900702);China Agriculture Research System of MOF and MARA(CARS-03)

摘要:

本研究旨在探究锌肥施用对小麦籽粒锌、锰含量及其吸收累积的影响, 分析锌和锰在这些过程中存在的差异, 为通过锌肥施用强化小麦锌营养、调控锰营养提供理论依据。本研究基于2017年在黄土高原旱地石灰性土壤上开始的长期定位试验, 分别在2022—2023和2023—2024年2个生长季节采集样品, 测定不同量锌肥施用条件下, 小麦开花期和成熟期各器官锌和锰的含量、累积量、根获取效率、地上部转移系数、土壤理化性质等指标, 揭示锌、锰吸收累积对锌肥施用的响应差异。结果表明, 与不施锌相比, 锌肥处理下土壤有效锌含量显著增加, 小麦成熟期籽粒锌含量提高42.4%, 地上部锌的总累积量增加46.3%; 开花期各部位锌累积量增加41.7%~131.8%, 根系锌获取效率提升34.6%, 但根-地上部锌转移系数降低30.5%, 籽粒锌收获指数无显著变化。同时, 与对照相比, 施加锌肥处理的小麦成熟期籽粒锰含量降低13.1%, 各器官锰累积量减少10.2%~27.0%; 开花期茎叶锰累积量降低7.7%, 根系平均锰获取效率和开花期根-地上部锰转移系数分别降低22.1%和32.2%, 但锰收获指数显著提高11.2%。结果表明, 施加锌肥可有效强化小麦锌营养, 同时间接调控锰营养, 其机制在于锌肥通过影响土壤微量元素有效锌及小麦开花期根系对锰锌的获取效率来提高锌的吸收而降低锰的吸收。研究结果为优化施肥策略、实现锰锌综合调控、协同提升小麦产量与营养品质提供一定的理论依据。

关键词: 作物, 微量元素, 施肥, 吸收, 转移

Abstract:

The aim of this study was to investigate the effects of zinc (Zn) fertilizer application on the uptake and accumulation of zinc and manganese (Mn) in wheat, and to analyze their interactions, providing a theoretical basis for enhancing Zn nutrition and regulating Mn nutrition through Zn fertilization. The research was conducted based on a long-term field experiment established in 2017 on calcareous soils in the dryland region of the Loess Plateau. Plant and soil samples were collected during two consecutive growing seasons (2022-2023 and 2023-2024). We measured the concentrations, accumulations, root acquisition efficiencies, and shoot transfer coefficients of Zn and Mn in various wheat organs, along with soil physicochemical properties, at both anthesis and maturity stages under different Zn fertilizer treatments to elucidate differences in Zn and Mn dynamics. Compared with the control (Zn 0), Zn fertilizer application significantly increased soil available Zn, with grain Zn concentration and total shoot Zn accumulation at maturity enhanced by 42.4% and 46.3%, respectively. At anthesis, Zn accumulation in all plant organs increased by 41.7%-131.8%. Root Zn acquisition efficiency rose by 34.6%, while the root-to-shoot Zn transfer coefficient decreased by 30.5%, with no significant change in the grain Zn harvest index. In contrast, Zn fertilization reduced grain Mn concentration by 13.1% and Mn accumulation in various organs at maturity by 10.2%-27.0%. At anthesis, Mn accumulation in stems declined by 7.7%, and both average root Mn acquisition efficiency and the root-to-shoot Mn transfer coefficient decreased by 22.1% and 32.2%, respectively. However, the Mn harvest index increased significantly by 11.2%. These results suggest that Zn fertilizer application effectively enhances Zn nutrition in wheat and indirectly regulates Mn uptake. The underlying mechanism appears to involve changes in the availability of soil micronutrients and the differential regulation of root acquisition efficiency for Zn and Mn during anthesis. These findings provide a theoretical foundation for optimizing fertilization strategies, enabling integrated Zn and Mn management, and ultimately improving both grain yield and nutritional quality in wheat production.

Key words: crop, micronutrient, fertilization, uptake, transfer

表1

田间定位试验不同处理2022年小麦播前0~20 cm土层土壤的基本化学性状"

处理Treatment 施锌量
Zn rate
(kg hm-2)
pH 有机质Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
硝态氮NO3--N
(mg kg-1)
铵态氮NH4+-N
(mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾Available K
(mg kg-1)
有效锌Available Zn
(mg kg-1)
有效锰Available Mn
(mg kg-1)
Zn 0 0 8.35 13.60 0.95 8.95 0.74 12.89 132.60 0.52 5.22
Zn 90 20.5 8.36 13.84 0.98 8.71 0.38 13.65 131.97 5.54 5.29

表2

低锰高锌小麦品种LI027与两地150个小麦品种平均籽粒锌、锰含量"

地点
Site
品种
Cultivar
籽粒锌含量
Grain Zn concentration (mg kg-1)
籽粒锰含量
Grain Mn concentration (mg kg-1)
杨凌 Yangling LI027 40.4±2.1* 28.6±0.9*
平均 Average 35.4±0.5 31.1±0.2
永寿 Yongshou LI027 21.6±0.8* 40.0±1.3*
平均 Average 19.1±0.2 45.4±0.6

表3

施用锌肥对小麦产量及生物量的影响"

处理
Treatment
成熟期 Maturity 开花期 Anthesis
籽粒产量
Grain yield
颖壳生物量
Glume biomass
茎叶生物量
Stem biomass
根生物量
Root biomass
茎叶生物量
Stem biomass
穗生物量
Spike biomass
Zn 0 9325±25 2338±40 7326±76 529±18 11,167±107 2663±48
Zn 90 9631±60** 2243±63 7110±61 640±16** 11,064±97 3035±31***

图1

小麦成熟期各部位锌、锰含量及累积量 处理同表1。***表示不同类别处理组间在0.001概率水平差异显著, ns表示差异不显著。"

图2

小麦开花期各部位锌、锰累积量 处理同表1。***表示不同类别处理组间在0.001概率水平差异显著, ns表示差异不显著。"

图3

施用锌肥对小麦锌、锰吸收、转移、分配的影响 处理同表1。*表示不同类别品种组间具有显著差异, **: P < 0.01, ***: P < 0.001, ns表示差异不显著。TFroot-shoot: 小麦开花期根向地上部的养分锌转移系数。"

[1] 黄秋婵, 韦友欢, 石景芳. 微量元素锌对人体健康的生理效应及其防治途径. 微量元素与健康研究, 2009, 26(1): 68-70.
Huang Q C, Wei Y H, Shi J F. The physiological effects of znic trace elements on the human health and its measures of preventing. Stud Trace Elem Health, 2009, 26(1): 68-70 (in Chinese with English abstract).
[2] Muthayya S, Rah J H, Sugimoto J D, Roos F F, Kraemer K, Black R E. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One, 2013, 8: e67860.
[3] Erikson K M, Syversen T, Aschner J L, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol, 2005, 19: 415-421.
[4] Eshak E S, Muraki I, Imano H, Yamagishi K, Tamakoshi A, Iso H. Manganese intake from foods and beverages is associated with a reduced risk of type 2 diabetes. Maturitas, 2021, 143: 127-131.
doi: 10.1016/j.maturitas.2020.10.009 pmid: 33308618
[5] Morgounov A, Li H H, Shepelev S, Ali M, Flis P, Koksel H, Savin T, Shamanin V. Genetic characterization of spring wheat germplasm for macro-, microelements and trace metals. Plants (Basel), 2022, 11: 2173.
[6] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853-2865.
doi: 10.3724/SP.J.1006.2022.11099
Chu H X, Mu W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853-2865 (in Chinese with English abstract).
[7] Shi M, Hou S B, Sun Y Y, Dang H Y, Song Q Y, Jiang L G, Cao W, Wang H L, He X H, Wang Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. J Clean Prod, 2020, 264: 121677.
[8] 王浩琳, 马悦, 李永华, 李超, 赵明琴, 苑爱静, 邱炜红, 何刚, 石美, 王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理. 中国农业科学, 2022, 55: 1800-1812.
doi: 10.3864/j.issn.0578-1752.2022.09.009
Wang H L, Ma Y, Li Y H, Li C, Zhao M Q, Yuan A J, Qiu W H, He G, Shi M, Wang Z H. Optimal management of phosphorus fertilization based on the yield and grain manganese concentration of wheat. Sci Agric Sin, 2022, 55: 1800-1812 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.09.009
[9] Chen X P, Zhang Y Q, Tong Y P, Xue Y F, Liu D Y, Zhang W, Deng Y, Meng Q F, Yue S C, Yan P, et al. Harvesting more grain zinc of wheat for human health. Sci Rep, 2017, 7: 7016.
[10] Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E, Huang D L, Liang D L, Zhao H B, Mao H, et al. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res, 2014, 156: 151-160.
[11] Zhao A Q, Zhang L S, Ning P, Chen Q, Wang B N, Zhang F X, Yang X B, Zhang Y L. Zinc in cereal grains: concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit Rev Food Sci Nutr, 2022, 62: 7917-7928.
[12] 李广鑫, 赵鹏, 睢福庆, 刘红恩, 高巍, 秦世玉, 李畅. 施锌对不同品种小麦锌吸收分配的影响. 农业资源与环境学报, 2020, 37: 216-325.
Li G X, Zhao P, Sui F Q, Liu H E, Gao W, Qin S Y, Li C. Effects of zinc application on zinc uptake and distribution among different wheat cultivars. J Agric Resour Environ, 2020, 37: 216-225 (in Chinese with English abstract).
[13] 国春慧, 赵爱青, 陈艳龙, 田霄鸿, 李宏云, 李硕. 锌肥种类和施用方式对小麦生育期内土壤不同形态Zn含量的影响. 西北农林科技大学学报(自然科学版), 2015, 43(7): 185-191.
Guo C H, Zhao A Q, Chen Y L, Tian X H, Li H Y, Li S. Effects of Zn source and application method on contents of different Zn forms during wheat growth. J Northwest A&F Univ (Nat Sci Edn), 2015, 43(7): 185-191 (in Chinese with English abstract).
[14] 丁玉兰, 黄翠, 方佳创, 李文虎, 王星舒, 张学美, 党海燕, 孙蕊卿, 杨珺, 徐隽峰, 等. 旱地小麦锌吸收转移与籽粒锌含量的关系. 植物营养与肥料学报, 2024, 30: 1650-1664.
Ding Y L, Huang C, Fang J C, Li W H, Wang X S, Zhang X M, Dang H Y, Sun R Q, Yang J, Xu J F, et al. Relationships of grain zinc concentration with wheat zinc uptake and translocation in dryland. J Plant Nutr Fert, 2024, 30: 1650-1664 (in Chinese with English abstract).
[15] Pearson J N, Rengel Z, Jenner C F, Graham R D. Transport of zinc and manganese to developing wheat grains. Physiol Plant, 1995, 95: 449-455.
[16] Pearson J N, Rengel Z, Jenner C F, Graham R D. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiol Plant, 1996, 98: 229-234.
[17] Kamaral C, Neate S M, Gunasinghe N, Milham P J, Paterson D J, Kopittke P M, Seneweera S. Genetic biofortification of wheat with zinc: opportunities to fine-tune zinc uptake, transport and grain loading. Physiol Plant, 2022, 174: e13612.
[18] Mani A, Sankaranarayanan K. In silico analysis of natural resistance-associated macrophage protein (NRAMP) family of transporters in rice. Protein J, 2018, 37: 237-247.
doi: 10.1007/s10930-018-9773-y pmid: 29785641
[19] Sachse B, Kolbaum A E, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst K I, Kappenstein O, Müller F, Röhl C, et al. Dietary manganese exposure in the adult population in Germany-what does it mean in relation to health risks. Mol Nutr Food Res, 2019, 63: e1900065.
[20] Pedas P, Ytting C K, Fuglsang A T, Jahn T P, Schjoerring J K, Husted S.Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol, 2008, 148: 455-466.
doi: 10.1104/pp.108.118851 pmid: 18614714
[21] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
doi: 10.3864/j.issn.0578-1752.2020.01.008
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.01.008
[22] 薛欣月, 于雪然, 刘晓刚, 马嘉欣, 田蕾, 李培富. 水稻锌吸收、转运、累积机理研究进展. 生物技术通报, 2022, 38(4): 29-43.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1484
Xue X Y, Yu X R, Liu X G, Ma J X, Tian L, Li P F. Research progress in absorption, transportation and accumulation mechanism of zinc in rice. Biotechnol Bull, 2022, 38(4): 29-43 (in Chinese with English abstract).
[23] 黄钻华, 苏金根. 小麦基施锌肥效果试验. 基层农技推广, 2024, 12(3): 16-19.
Huang Z H, Su J G. Experimental study on the effect of applying zinc fertilizer to wheat. Prim Agric Technol Ext, 2024, 12(3): 16-19 (in Chinese).
[24] 汪洪, 刘新保, 褚天铎, 杨清, 李春花. 锌肥对作物产量、子粒锌及土壤有效锌含量的后效. 土壤肥料, 2003, (1): 3-6.
Wang H, Liu X B, Chu T D, Yang Q, Li C H. Residual effect of zinc application on crop yield, zinc concentration in crop grain and soil available zinc. Soil Fert, 2003, (1): 3-6 (in Chinese).
[25] 陈玲, 田霄鸿, 李峰, 李生秀. 碳酸钙和锌对五种基因型小麦生长、锌吸收及营养液中HCO3-含量和pH的影响. 植物营养与肥料学报, 2006, 12: 523-529.
Chen L, Tian X H, Li F, Li S X. Effects of CaCO3 and Zn on growth and zn uptake of five winter wheat genotypes as well as HCO3- concentration and pH in nutrient solution. Plant Nutr Fert Sci, 2006, 12: 523-529 (in Chinese with English abstract).
[26] 薛盈文, 李玉春, 叶永柏, 郭伟. 黑龙江省小麦种植区划的限制因素分析. 现代化农业, 2023, (8): 21-24.
Xue Y W, Li Y C, Ye Y B, Guo W. Analysis of restrictive factors in wheat planting zoning in Heilongjiang province. Mod Agric, 2023, (8): 21-24 (in Chinese).
[27] 李孟华, 王朝辉, 李强, 戴健, 高雅洁, 靳静静, 曹寒冰, 王森. 低锌旱地土施锌肥对小麦产量和锌利用的影响. 农业环境科学学报, 2013, 32: 2168-2174.
Li M H, Wang Z H, Li Q, Dai J, Gao Y J, Jin J J, Cao H B, Wang S. Effects of soil Zn application on grain yield and Zn utilization of wheat in Zn-deficient dryland soils. J Agro-Environ Sci, 2013, 32: 2168-2174 (in Chinese with English abstract).
[28] 罗一诺, 李文虎, 李艳霏, 张思琦, 牟文燕, 黄宁, 孙蕊卿, 丁玉兰, 佘文婷, 李小涵, 等. 我国新育成小麦品种(系)籽粒锌含量及影响因素. 植物营养与肥料学报, 2025, 31: 32-47.
Luo Y N, Li W H, Li Y F, Zhang S Q, Mu W Y, Huang N, Sun R Q, Ding Y L, She W T, Li X H, et al. Zinc concentration and its influencing factors in grain of newly developed wheat cultivars (lines) in China. J Plant Nutr Fert, 2025, 31: 32-47 (in Chinese with English abstract).
[29] Pearson J N, Jenner C F, Rengel Z, Graham R D. Differential transport of Zn, Mn and sucrose along the longitudinal axis of developing wheat grains. Physiol Plant, 1996, 97: 332-338.
[30] 姚澄, 周天宇, 樊广萍, 周东美, 史高玲, 沈文忠, 张绪美, 陈未, 李江叶, 高岩. 不同锌肥对土壤镉有效性及小麦镉吸收转运的影响. 农业环境科学学报, 2024, 43: 19-29.
Yao C, Zhou T Y, Fan G P, Zhou D M, Shi G L, Shen W Z, Zhang X M, Chen W, Li J Y, Gao Y. Effects of different zinc fertilizers on soil cadmium availability and cadmium uptake and transport in wheat. J Agro-Environ Sci, 2024, 43: 19-29 (in Chinese with English abstract).
[31] Milner M J, Seamon J, Craft E, Kochian L V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369-381.
doi: 10.1093/jxb/ers315 pmid: 23264639
[1] 吉白璐, 孙艺文, 刘万峰, 钱亚新, 蒋彩虹, 耿锐梅, 刘旦, 程立锐, 杨爱国, 黄立钰, 李晓旭, 蒲文宣, 高军平, 张强, 文柳璎. 烟草脂类合成关键基因NtLPAT的功能验证[J]. 作物学报, 2025, 51(9): 2527-2537.
[2] 高园, 李霞, 魏少博, 田小海, 周文彬. 植物光合午休研究进展[J]. 作物学报, 2025, 51(9): 2253-2265.
[3] 刘晓宁, 张颖, 蔡曼蕾, 马昊, 苗智博, 曹宁, 连荣芳, 徐全乐. LsSAT2与LsAAE3互作调控山黧豆ODAP水平[J]. 作物学报, 2025, 51(8): 2220-2227.
[4] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[5] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[6] 沈傲, 刘敏, 倪迪安, 刘炜. 谷子m6A甲基转移酶基因SiMTA1的启动子序列特征和基因表达模式分析[J]. 作物学报, 2025, 51(7): 1969-1978.
[7] 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783.
[8] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[9] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[10] 陈昊翔, 万鑫杰, 陈青, 王劲松, 董二伟, 王媛, 黄晓磊, 刘秋霞, 焦晓燕. 石灰性褐土条件下高粱与玉米耐瘠薄特性及对土壤肥力响应的比较[J]. 作物学报, 2025, 51(10): 2775-2787.
[11] 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67.
[12] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[13] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[14] 刘春燕, 张利影, 周杰, 许依, 杨亚东, 曾昭海, 臧华栋. 豆科作物轮作强化农田生态系统功能的研究进展[J]. 作物学报, 2024, 50(8): 1885-1895.
[15] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!