作物学报 ›› 2026, Vol. 52 ›› Issue (2): 363-375.doi: 10.3724/SP.J.1006.2026.51075
鲁雅妮1,2,3,丁超杰2,3,张煜2,3,杜习军2,3,齐学礼2,3,胡琳2,3,许为钢1,2,3,*
Lu Ya-Ni1,2,3,Ding Chao-Jie2,3,Zhang Yu2,3,Du Xi-Jun2,3,Qi Xue-Li2,3,Hu Lin2,3,Xu Wei-Gang1,2,3,*
摘要: 小麦茎基腐病(Fusarium crown rot, FCR)是世界性小麦土传真菌性病害。近年来,该病害在我国长江中下游及黄淮麦区持续加重发生。然而,当前国内缺乏抗病性突出的小麦品种资源。因此,筛选抗病种质、挖掘抗病基因已成为小麦抗性育种的重要研究方向。为筛选FCR的优异抗源、挖掘抗病基因,本研究利用黄淮麦区优势病原菌假禾谷镰刀菌(F. pseudograminearum)菌株WZ-8A,对133份地方品种及67份现代品种进行苗期抗性鉴定,并利用获得的表型数据结合小麦660K基因型数据进行全基因组关联分析(genome-wide association study, GWAS)。结果表明,供试品种中仅秃头麦(杞县)、早洋麦、百泉41、开麦18、周麦24、04中36、豫麦35、中育3号8个品种表现中抗。GWAS分析共检测到30个与抗性显著相关的位点,其中2个位点(SNP AX-111055517和SNP AX-110584552)在多种模型及环境下稳定出现。进一步对这2个显著位点所在的基因组区域进行基因功能注释及表达模式分析,发现基因TraesCS4B02G048500可能为潜在抗病候选基因。本研究鉴定出8个苗期中抗种质材料,挖掘到的显著性位点和预测基因为后续抗病育种等工作提供了资源、思路和理论依据。
|
[1] 栾冬冬, 贾吉玉, 王光州, 等. 中国小麦茎基腐病的发生现状及防治策略. 麦类作物学报, 2022, 42: 512–520.
[2] 崔晓敬, 陈洁, 岳建超, 等. 小麦茎基腐病的发生与综合防治. 园艺与种苗, 2022, 42(7): 64–65.
[3] 邵亮亮, 应美蓉, 杜京霖, 等. 复合免疫亲和柱净化高效液相色谱法同时测定小麦中的4种真菌毒素. 食品科技, 2021, 46(2): 328–334.
[4] 尚月丽, 杨俊花, 刘宁, 等. 脱氧雪腐镰刀菌烯醇对动物肝脏组织损伤的研究进展. 畜牧与兽医, 2020, 52(8): 131–136.
[5] 李巧云, 郝晓鹏, 姜玉梅, 等. 小麦茎基腐病抗性位点研究进展. 河南农业大学学报, 2024, 58: 539–551. [6] Li J L, Zhai S S, Xu X R, et al. Dissecting the genetic basis of Fusarium crown rot resistance in wheat by genome wide association study. Theor Appl Genet, 2024, 137: 43. [7] Li F J, Guo C, Zhao Q, et al. Genome-wide linkage mapping of Fusarium crown rot in common wheat (Triticum aestivum L.). Front Plant Sci, 2024, 15: 1457437. [8] Wang C Y, Sun M L, Zhang P P, et al. Genome-wide association studies on Chinese wheat cultivars reveal a novel Fusarium Crown rot resistance quantitative trait locus on chromosome 3BL. Plants, 2024, 13: 856. [9] Su Y Q, Xu X R, Wang Y Q, et al. Identification of genetic loci and candidate genes underlying Fusarium crown rot resistance in wheat. Theor Appl Genet, 2025, 138: 23. [10] Ma J, Li H B, Zhang C Y, et al. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet, 2010, 120: 1119–1128. [11] Poole G J, Smiley R W, Paulitz T C, et al. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theor Appl Genet, 2012, 125: 91–107. [12] Zhang N, Liu L, Li S G, et al. TaHSP18.6 and TaSRT1 interact to confer resistance to Fusarium crown rot by regulating the auxin content in common wheat. Proc Natl Acad Sci USA, 2025, 122: e2500029122. [13] Yang X, Zhang L L, Wei J J, et al. A TaSnRK1α-TaCAT2 model mediates resistance to Fusarium crown rot by scavenging ROS in common wheat. Nat Commun, 2025, 16: 2549. [14] Wildermuth G B. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum Group 1. Plant Dis, 1994, 78: 949. [15] Collard B C Y, Grams R A, Bovill W D, et al. Development of molecular markers for crown rot resistance in wheat: mapping of QTLs for seedling resistance in a ‘2-49’ × ‘Janz’ population. Plant Breed, 2005, 124: 532–537. [16] Collard B C Y, Jolley R, Bovill W D, et al. Confirmation of QTL mapping and marker validation for partial seedling resistance to crown rot in wheat line ‘2-49’. Aust J Agric Res, 2006, 57: 967. [17] Zheng Z, Kilian A, Yan G J, et al. QTL conferring Fusarium crown rot resistance in the elite bread wheat variety EGA Wylie. PLoS One, 2014, 9: e96011. [18] Liu C J, Ma J, Li H B, et al. The homoeologous regions on long arms of group 3 chromosomes in wheat and barley harbour major crown rot resistance loci. Czech J Genet Plant Breed, 2011, 47: S109–S114.
[19] 张鹏, 霍燕, 周淼平, 等. 小麦禾谷镰孢菌茎基腐病抗源的筛选与评价. 植物遗传资源学报, 2009, 10: 431–435.
[20] 金京京, 齐永志, 王丽, 等. 小麦种质对茎基腐病抗性评价及优异种质筛选. 植物遗传资源学报, 2020, 21: 308–313.
[21] 邢小萍, 张娅珂, 刘庆强, 等. 黄淮麦区小麦品种对两种镰孢菌(Fusarium)的抗性鉴定. 植物遗传资源学报, 2020, 21: 1058–1067. [22] Shi S D, Zhao J C, Pu L F, et al. Identification of new sources of resistance to crown rot and Fusarium Head blight in wheat. Plant Dis, 2020, 104: 1979–1985.
[23] 徐飞, 李淑芳, 石瑞杰, 等. 黄淮麦区主栽小麦品种抗茎基腐病评价及茎秆和籽粒中毒素积累分析. 植物病理学报, 2021, 51: 912–920. [24] Wildermuth G, Purss G. Further sources of field resistance to crown rot (Gibberella zeae) of cereals in Queensland. Australian J Exp Agric, 1971, 11: 455–459. [25] Wildermuth G B, McNamara R B, Quick J S. Crown depth and susceptibility to crown rot in wheat. Euphytica, 2001, 122: 397–405. [26] Mitter V, Zhang M C, Liu C J, et al. A high-throught put glass house bioassay to detect crown rot resistance in wheat germplasm. Plant Pathology, 2006, 55: 433–441.
[27] 杨云, 贺小伦, 胡艳峰, 等. 黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性. 麦类作物学报, 2015, 35: 339–345.
[28] 张磊磊, 闫香凝, 原敏婕, 等. 小麦种质资源茎基腐病抗性鉴定及定位分析. 植物遗传资源学报, 2024, 25: 184–192.
[29] 李巧云, 郭振峰, 尹钊, 等. 194份小麦品种(系)苗期茎基腐病抗性鉴定与抗病位点检测. 麦类作物学报, 2025, 45: 329–336.
[30] 吴玉星, 韩森, 王亚娇, 等. 河北省小麦主栽品种对茎基腐病抗性鉴定及评价指标相关性分析. 植物保护, 2023, 49(6): 267–271. [31] Poole G J, Smiley R W, Walker C, et al. Effect of climate on the distribution of Fusarium spp. causing crown rot of wheat in the Pacific Northwest of the United States. Phytopathology, 2013, 103: 1130–1140.
[32] 杜习军. 河南省小麦抗白粉病种质资源筛选及优异基因发掘. 西北农林科技大学博士学位论文, 陕西杨凌, 2021. [33] Yu S Z, Wu J H, Wang M, et al. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011–1024. [34] Wang S B, Feng J Y, Ren W L, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016, 6: 19444. [35] Tamba C L, Zhang Y. A fast mrMLM algorithm for multi-locus genome-wide association studies. BioRxiv, 2018. [36] Wen Y J, Zhang H W, Ni Y L, et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform, 2017, 18: 906. [37] Zhang J, Feng J Y, Ni Y L, et al. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity, 2017, 118: 517–524. [38] Tamba C L, Ni Y L, Zhang Y M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol, 2017, 13: e1005357. [39] Ren W L, Wen Y J, Dunwell J M, et al. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity, 2018, 120: 208–218. [40] Li M, Zhang Y W, Xiang Y, et al. IIIVmrMLM: the R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol Plant, 2022, 15: 1251–1253. [41] Li M, Zhang Y W, Zhang Z C, et al. A compressed variance component mixed model for detecting QTNs and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant, 2022, 15: 630–650. [42] Zhang N, Tang L, Li S G, et al. Integration of multi-omics data accelerates molecular analysis of common wheat traits. Nat Commun, 2025, 16: 2200.
[43] 杨云. 小麦品种及种质资源对镰刀菌茎基腐病的抗性鉴定. 河南农业大学硕士学位论文, 河南郑州, 2015. [44] Yang X M, Ma J, Li H B, et al. Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. Eur J Plant Pathol, 2010, 128: 495–502. [45] Li X M, Liu C J, Chakraborty S, et al. A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. J Phytopathol, 2008, 156: 751–754. [46] Hou S, Lin Y, Yu S F, et al. Genome-wide association analysis of Fusarium crown rot resistance in Chinese wheat landraces. Theor Appl Genet, 2023, 136: 101.
[47] 陆宁海, 吴利民, 郎剑锋, 等. 小麦茎基腐病苗期抗病性鉴定. 贵州农业科学, 2015, 43(10): 119–121.
[48] 温阳俊, 冯建英, 张瑾. 多位点关联分析方法学的研究进展. 南京农业大学学报, 2022, 45(1): 1–10. [49] Jin J J, Duan S N, Qi Y Z, et al. Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theor Appl Genet, 2020, 133: 2063–2073.
[50] 蒲乐凡, 任慧, 欧杨晨, 等. 小麦茎基腐病和赤霉病抗源筛选及关联SNP位点分析. 麦类作物学报, 2020, 40: 780–788. [51] Martin A, Bovill W D, Percy C D, et al. Markers for seedling and adult plant crown rot resistance in four partially resistant bread wheat sources. Theor Appl Genet, 2015, 128: 377–385. [52] Mou Y F, Liu Y Y, Tian S J, et al. Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L.). Int J Mol Sci, 2019, 20: 1914. [53] Zhang J L, Simmons C, Yalpani N, et al. Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays. Plant Mol Biol, 2005, 59: 323–343. [54] Lea A J, Peng J L, Ayroles J F. Diverse environmental perturbations reveal the evolution and context-dependency of genetic effects on gene expression levels. Genome Res, 2022, 32: 1826–1839. [55] Agrawal GK, Tamogami S, Han O, et al. Rice octadecanoid pathway. Biochem Biophys Res Commun, 2004, 317: 1–15. [56] Sobajima H, Takeda M, Sugimori M, et al. Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta, 2003, 216: 692–698. [57] Gao Y T, Tian X J, Wang W D, et al. Changes in concentrations and transcripts of plant hormones in wheat seedling roots in response to Fusarium crown rot. Crop J, 2023, 11: 1441–1450. [58] Sun T T, Wu Q B, Zang S J, et al. Molecular insights into OPR gene family in Saccharum identified a ScOPR2 gene could enhance plant disease resistance. Plant J, 2024, 120: 335–353. |
| [1] | 许倍铭, 郝紫瑞, 冯健超, 马耕, 王丽芳, 谢迎新, 王晨阳, 马冬云. 氮磷减施对不同强筋小麦品种产量和品质及其土壤生物学特性的影响[J]. 作物学报, 2026, 52(2): 603-619. |
| [2] | 王粤生, 葛冬冬, 程兰斐, 陈春环, 王长有, 刘新伦, 李停栋, 邓平川, 吉万全, 赵继新. 小麦-华山新麦草二体异代换系16DH25-7的分子细胞遗传学及抗病性鉴定[J]. 作物学报, 2026, 52(2): 433-445. |
| [3] | 李诗晴, 王茜, 王素华, 张耀文, 王丽侠. 绿豆种质资源苗期耐盐性鉴定及相关基因发掘[J]. 作物学报, 2026, 52(2): 376-388. |
| [4] | 谢玮欣, 毛守发, 韦金贵, 侯思宇, 樊志龙, 殷文, 胡发龙, 南运有, 柴强. 干旱灌区绿肥还田对减量灌水春小麦水分利用的调控效应[J]. 作物学报, 2026, 52(2): 514-526. |
| [5] | 林子晴, 钟醒宇, 刘樊, 任子澳, 马瑞, 邓秀峰, 王东伟, 刘少鹏, 陈康, 张明才, 李召虎, 周于毅, 段留生. 山东北部沿海平原区小麦-玉米周年两吨粮超高产技术创建[J]. 作物学报, 2026, 52(2): 631-643. |
| [6] | 胡城祯, 高维东, 孔斌雪, 王建飞, 车卓, 杨德龙, 陈涛. 小麦TaAPC11基因家族鉴定及TaAPC11-5B参与干旱胁迫的生物学功能研究[J]. 作物学报, 2026, 52(1): 148-164. |
| [7] | 王雅致, 杨飚, 季香林, 石瑛, 张丽莉. 二倍体马铃薯抗旱资源鉴定及抗旱基因初步筛选[J]. 作物学报, 2026, 52(1): 72-84. |
| [8] | 马婷婷, 郭晓江, 李豪, 邓梅, 蒲至恩, 李伟, 张亚洲, 王凤涛, 崔凤娟, 魏育明, 王际睿, 蒋云峰, 陈国跃. 利用小麦农家种孝感麦协同改良蜀麦753产量与抗病耐逆性的育种实践[J]. 作物学报, 2026, 52(1): 56-71. |
| [9] | 董丽华, 董成艳, 李正楠, 余静, 叶靓, 刘芳, 谭静. 玉米禾谷镰孢穗腐病抗性候选基因的筛选与鉴定[J]. 作物学报, 2026, 52(1): 131-147. |
| [10] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [11] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. |
| [12] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. |
| [13] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [14] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. |
| [15] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
|