欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 376-388.doi: 10.3724/SP.J.1006.2026.54061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

绿豆种质资源苗期耐盐性鉴定及相关基因发掘

李诗晴1,2,王茜2,王素华1,张耀文2,王丽侠1,*   

  1. 1 作物基因资源与育种全国重点实验室 / 中国农业科学院作物科学研究所, 北京100081; 2 山西农业大学农学院,山西太谷030801
  • 收稿日期:2025-05-16 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-12
  • 通讯作者: 王丽侠, E-mail: wanglixia03@caas.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1200705, 2019YFD1001303), 国家自然科学基金项目(32241042)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08)资助。

Evaluation of salt tolerance at the seedling stage and related gene mining in mung bean germplasm resources

Li Shi-Qing1,2,Wang Qian2,Wang Su-Hua1,Zhang Yao-Wen2,Wang Li-Xia1,*   

  1. 1 National Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2025-05-16 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-12
  • Contact: 王丽侠, E-mail: wanglixia03@caas.cn
  • Supported by:
    This study was supported by the National Key Research & Development Program of China (2023YFD1200705, 2019YFD1001303), the National Natural Science Foundation of China (32241042), and the China Agriculture Research System of MOF and MARA (CARS-08).

摘要: 土壤盐渍化对农业生产构成严峻威胁,发掘绿豆耐盐种质对充分利用我国盐渍土地和发展绿豆产业均具有重要意义。本研究基于株高、地上部鲜重和根系鲜重等13个性状,对200份绿豆种质进行了苗期耐盐性(150 mmol L?1 NaCl)鉴定。结果表明,单位体积根长的平均耐盐系数最大(0.806),根分枝数最小(0.591);盐胁迫下不同种质对根干重、单位体积根长和根鲜重的响应存在明显差异。根据盐害症状划分的盐害级别,高耐盐种质16份,盐高敏感种质12份,华北区的耐盐种质占比最高;结合重测序数据的全基因组关联分析(GWAS)共检测到67个与绿豆耐盐性显著关联的SNP位点,共涉及348个候选基因,包括99个具有功能注释的基因;经单倍型分析验证,基因Vradi04g09980Vradi01g06290Vradi08g02890可能与苗期耐盐性相关。上述结果为进一步开展绿豆耐盐种质创制及解析耐盐调控机制奠定了基础。

关键词: 绿豆, 苗期, 耐盐性, 全基因组关联分析, 种质资源, 单倍型分析

Abstract: Soil salinization poses a serious threat to agricultural production. Exploring salt-tolerant germplasm in mung bean is crucial for the effective utilization of saline-alkali soils in China and for promoting the sustainable development of the mung bean industry. In this study, 200 mung bean germplasm accessions were evaluated for salt tolerance (150 mmol L?1 NaCl) at the seedling stage based on 13 phenotypic traits, including plant height, above-ground fresh weight, and root fresh weight. The results showed that the salt tolerance coefficient for root length per unit volume was the highest (0.806), while that for root branching was the lowest (0.591). Significant differences were observed among germplasms in their responses to salt stress, particularly in root dry weight, root length per unit volume, and root fresh weight. Based on salt damage symptoms, 16 highly salt-tolerant and 12 highly salt-sensitive germplasms were identified, with the highest proportion of salt-tolerant accessions found in the North China region. A genome-wide association study (GWAS) based on resequencing data identified 67 SNP loci significantly associated with salt tolerance, corresponding to 348 candidate genes, of which 99 had annotated functions. Among these, Vradi04g09980, Vradi01g06290, and Vradi08g02890 were validated through haplotype analysis as potentially associated with salt tolerance at the seedling stage. These findings provide a valuable foundation for the genetic improvement of salt tolerance in mung bean and for further elucidating the underlying regulatory mechanisms.

Key words: mung bean, seedling stage, salt tolerance, genome-wide association study (GWAS), germplasm resources, haplotype 

[1] 田静, 程须珍, 范保杰, . 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 1521.

Tian J, Cheng X Z, Fan B J, et al. Current situation and development trend of mung bean varieties in China. Crops, 2021, (6): 15–21 (in Chinese with English abstract).

[2] 石少龙. 绿豆产业待新篇: 杂粮系列谈之七. 中国粮食经济, 2024, (11): 7879.
Shi S L. A new chapter of mung bean industry: talking about the series of miscellaneous grains (7). China Grain Econ, 2024, (11): 78–79 (in Chinese with English abstract).

[3] 陆宝金, 田生昌, 左忠, . 盐渍化土地可持续利用研究综述及展望. 宁夏大学学报(自然科学版), 2023, 44(1): 79–88.
Lu B J, Tian S C, Zuo Z, et al. Review and prospect on sustainable utilization of salinized land. J Ningxia Univ (Nat Sci Edn), 2023, 44(1): 79–88 (in Chinese with English abstract).

[4] 胡亮亮, 王素华, 王丽侠, . 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367–379.
Hu L L, Wang S H, Wang L X, et al. Identification of salt tolerance and screening of salt tolerant germplasm of mung bean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 367–379 (in Chinese with English abstract).

[5] 邓立成, 李程, 赫磊, . 耐盐南粳品种苗期盐胁迫应答的生理特性及其耐盐相关基因分析. 中国农业科学, 2025, 58: 2275–2290.
Deng L C, Li C, He L, et al. Physiological characteristics in response to salt stress and allelic variation and expression of salt-responsive genes in seedling stage of Nangeng rice varieties with salt-tolerance ability. Sci Agric Sin, 2025, 58: 2275–2290 (in Chinese with English abstract).

[6] 袁宇婷, 张晓燕, 吴谷丰, . 基于主成分和隶属函数分析的大豆种质资源耐盐性综合评价. 大豆科学, 2025, 44(1): 22–32.
Yuan Y T, Zhang X Y, Wu G F, et al. Comprehensive evaluation of salt tolerance of soybean germplasm resources based on principal component and membership function analysis. Soybean Sci, 2025, 44(1): 22–32 (in Chinese with English abstract).

[7] Wicke B, Smeets E, Dornburg V, et al. Correction: The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci, 2020, 13: 2585.

[8] 于崧, 梁海芸, 郭潇潇, . 不同基因型绿豆苗期耐盐碱性分析及其鉴定指标的筛选. 干旱地区农业研究, 2018, 36(4): 223–232.
Yu S, Liang H Y, Guo X X, et al. Analysis of saline-alkaline tolerance and determination of saline-alkaline tolerance evaluation indicators in seedling stage of different mung bean genotypes. Agric Res Arid Areas, 2018, 36(4): 223–232 (in Chinese with English abstract).

[9] 孙振雷, 刘鹏, 叶柏军, . 绿豆种子萌发及苗期抗盐性的研究. 内蒙古民族大学学报(自然科学版), 2001, 16(1): 31–38.
Sun Z L, Liu P, Ye B J, et al. Study on germination of mung bean seeds and salt resistance in seedling stage. J Inner Mongolia Teach (Nat Nat Sci), 2001, 16(1): 31–38 (in Chinese with English abstract).

[10] 任建华, 高平平, 乔燕祥, . 绿豆幼苗期耐盐性研究. 山西农业科学, 1994, 22(2): 20–24.
Ren J H, Gao P P, Qiao Y X, et al. A study on salt tolerance of mung bean in seedling stage. J Shanxi Agric Sci, 1994, 22(2): 20–24 (in Chinese with English abstract).

[11] Mishra S, Alavilli H, Lee B H, et al. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mung bean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e106678.

[12] Kumar S, Kalita A, Srivastava R, et al. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mung bean. Front Plant Sci, 2017, 8: 1896.

[13] Xu W Y, Liu T, Zhang H Y, et al. Mung bean DIRIGENT gene subfamilies and their expression profiles under salt and drought stresses. Front Genet, 2021, 12: 658148.

[14] Liu J Y, Xue C C, Lin Y, et al. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mung bean. Gene, 2022, 836: 146658.

[15] 孙璐, 周宇飞, 汪澈, . 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45: 1714–1722.
Sun L, Zhou Y F, Wang C, et al. Screening and identification of sorghum cultivars for salinity tolerance during germination. Sci Agric Sin, 2012, 45: 1714–1722 (in Chinese with English abstract).

[16] 李诗晴, 王素华, 张耀文, . 769份绿豆种质资源萌发期耐盐性鉴定. 植物遗传资源学报, 2025, 26: 672–682.
Li S Q, Wang S H, Zhang Y W, et al. Salt tolerance identification of 769 mung bean germplasm at germination stage. J Plant Genet Resour, 2025, 26: 672–682 (in Chinese with English abstract).

[17] 程须珍, 王素华, 王丽侠. 绿豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Cheng X Z, Wang S H, Wang L X. Descriptors and Data Standard for Mung bean (Vigna radiata (L.) Wilczek). Beijing: China Agriculture Press, 2006 (in Chinese).

[18] Smith D S, Maxwell P W, De Boer S H. Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agric Food Chem, 2005, 53: 9848–9859.

[19] Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890.

[20] Pei S R, Liu T, Ren X, et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform, 2021, 22: bbaa148.

[21] Huang M, Liu X L, Zhou Y, et al. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 2019, 8: giy154.

[22] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.

[23] Li H, Peng Z Y, Yang X H, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43–50.

[24] Zhang R L, Jia G Q, Diao X M. GeneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinfor, 2023, 24: 199.

[25] 焦广音, 任建华, 逯贵生, . 绿豆品种资源耐盐性鉴定与研究. 作物品种资源, 1997, (2): 38–40.
Jiao G Y, Ren J H, Lu G S, et al. Identification and study on salt tolerance of mung bean variety resources. China Seed Ind, 1997, (2): 38–40 (in Chinese).

[26] 时会影, 范保杰, 刘长友, . 绿豆耐盐性研究进展. 植物遗传资源学报, 2022, 23: 15941603.
Shi H Y, Fan B J, Liu C Y, et al. Research progress of salt tolerance in mung bean (Vigna radiata L.). J Plant Genet Resour, 2022, 23: 1594–1603 (in Chinese with English abstract).

[27] 戴海芳, 武辉, 阿曼古丽·买买提阿力, . 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47: 1290–1300.
Dai H F, Wu H, Maimaitiali A, et al. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014, 47: 1290–1300 (in Chinese with English abstract).

[28] 慈敦伟, 张智猛, 丁红, . 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805–814.
Ci D W, Zhang Z M, Ding H, et al. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805–814 (in Chinese with English abstract).

[29] 刘谢香, 常汝镇, 关荣霞, . 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1–8.
Liu X X, Chang R Z, Guan R X, et al. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1–8 (in Chinese with English abstract).

[30] Aski M S, Rai N, Reddy V R P, et al. Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan. PLoS One, 2021, 16: e0247810.

[31] 许政晗. 9个春玉米杂交种全生育期耐盐性评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2024.
Xu Z H. Evaluation of Salt Tolerance of 9 Spring Maize Hybrids in the Whole Growth Period. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2024 (in Chinese with English abstract).

[32] Huang Y Y, Zhou J H, Li Y X, et al. Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice. Int J Mol Sci, 2021, 22: 10892.

[33] Bischoff V, Selbig J, Scheible W R. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav, 2010, 5: 1057–1059.

[34] Yuan Y X, Teng Q, Zhong R Q, et al. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci, 2016, 243: 120–130.

[35] Endler A, Kesten C, Schneider R, et al. A mechanism for sustained cellulose synthesis during salt stress. Cell, 2015, 162: 1353–1364.

[36] Ma Q, Su C X, Dong C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress. Plants, 2021, 10: 2281.

[37] Bird D, Beisson F, Brigham A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J, 2007, 52: 485–498.

[38] Panikashvili D, Shi J X, Bocobza S, et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant, 2010, 3: 563–575.

[39] Kim D Y, Jin J Y, Alejandro S, et al. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant, 2010, 139: 170–180.

[40] Zhang Z L, Tong T, Fang Y X, et al. Genome-wide identification of barley ABC genes and their expression in response to abiotic stress treatment. Plants, 2020, 9: 1281.

[41] Himelblau E, Mira H, Lin S J, et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol, 1998, 117: 1227–1234.

[42] Wang Y Y, Cao Y B, Liang X Y, et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.

[43] 刘晓, 刘晓红, 宋姝, . 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715–726.
Liu X, Liu X H, Song S, et al. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715–726 (in Chinese with English abstract).

[44] Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol, 2018, 69: 209–236.

[45] Puig S, Andrés-colás N, García-molina A, et al. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ, 2007, 30: 271–290.

[46] Puig S, Mira H, Dorcey E, et al. Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun, 2007, 354: 385–390.

[1] 亓青松, 牛翔雨, 刘冰可, 康禄, 王琛, 封德顺. 小偃麦辐射诱变种质芽期和苗期耐盐鉴定、筛选及耐盐指标评价[J]. 作物学报, 2026, 52(2): 389-404.
[2] 鲁雅妮, 丁超杰, 张煜, 杜习军, 齐学礼, 胡琳, 许为钢. 河南省200份小麦品种苗期茎基腐病抗性鉴定与全基因组关联分析[J]. 作物学报, 2026, 52(2): 363-375.
[3] 王菲菲, 张胜忠, 杨贵华, 苗华荣, 胡晓辉, 张则林, 刘莎莎, 乔利仙, 单世华, 陈静. 331份花生种质苗期耐盐性综合评价和强耐盐种质鉴选[J]. 作物学报, 2026, 52(1): 279-294.
[4] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[5] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[6] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[7] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[10] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[11] 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724.
[12] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[13] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[14] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[15] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .