• •
董丽华,董成艳,李正楠,余 静,叶靓,刘芳,谭静*
Dong Li-Hua,Dong Cheng-Yan,Li Zheng-Nan,Yu Jing,Ye Liang,Liu Fang,Tan Jing*
摘要: 禾谷镰孢(Fusarium graminearum, Fg)穗腐病是造成我国西南地区玉米减产的主要因素之一。本研究选取对禾谷镰孢穗腐病表现高抗和高感的玉米自交系各2个(高抗系4019和NMJT,高感系黄早四和GEMS61),对授粉后15 d的籽粒接种禾谷镰孢,设置3个侵染时间点进行取样和转录组测序,通过差异表达基因(differentially expressed genes, DEG)分析并结合前期全基因组关联分析(genome-wide association study, GWAS)共定位、qRT-PCR验证、克隆及其序列比对和表达模式研究,对玉米抗禾谷镰孢穗腐病候选基因进行筛选、克隆和初步验证。主要研究结果如下:(1) 转录组分析结果表明,禾谷镰孢侵染3个时间点抗感材料之间均存在大量的DEG;2个抗病材料间存在共同的响应机制,DEG主要富集于植物次生代谢产物、植物激素信号转导、钙信号通路和抗氧化系统等通路;同时,2个抗病材料间也存在特异的响应机制,通过调控各自特异的基因表达增强其抗病性。(2) 结合转录组DEG与GWAS共定位到24个基因,根据基因功能注释和文献报道,从中预测了12个可能与禾谷镰孢穗腐病抗性相关的候选基因;经qRT-PCR验证并进行克隆,成功克隆出2个基因Zm00001eb104020和Zm00001eb195780。(3) 对2个候选基因进行序列比对和时空表达模式分析表明,2个基因编码的蛋白序列在抗感材料间存在共同的位点突变和缺失;2个候选基因的时空表达特征存在明显差异,但其表达量在抗病材料中都较感病材料高,且均表现为接种禾谷镰孢后在籽粒中被诱导显著上调。研究结果为后续玉米抗禾谷镰孢穗腐病候选基因的分子机制解析、功能验证及抗病种质的选育提供了理论依据。
| [1] Ullstrup A J. An undescribed ear rot of corn caused by physalospora zeae. Phytopathol, 1946, 36: 201–212. [2] Atanasova-Penichon V, Pons S, Pinson-Gadais L, et al. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol Plant Microbe Interact, 2012, 25: 1605–1616. [3] Beukes I, Rose L J, van Coller G J, et al. Disease development and mycotoxin production by the Fusarium graminearum species complex associated with South African maize and wheat. Eur J Plant Pathol, 2018, 150: 893–910. [4] Tran T N, Lanubile A, Marocco A, et al. Transcriptome profiling of eight Zea mays lines identifies genes responsible for the resistance to Fusarium verticillioides. BMC Plant Biol, 2024, 24: 1107. [5] 陈晓娟, 文成敬. 四川省玉米穂腐病研究初报. 西南大学学报(自然科学版), 2002, 24(1): 21–22. Chen X J, Wen C J. Preliminary study of maize ear rot in Sichuan. J Southwest Univ (Nat Sci Edn), 2002, 24(1): 21–22 (in Chinese with English abstract).
[6] 李辉, 向葵, 张志明, 等. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167–174.
[7] 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007, 33: 491–496.
[8] 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014, (21): 121–122. [9] Folcher L, Jarry M, Weissenberger A, et al. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot, 2009, 28: 302–308. [10] Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.
[11] 段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152–2164.
[12] 席靖豪. 黄淮海夏玉米穗腐病病原多样性分析及玉米新品种抗病性鉴定. 河南农业大学硕士学位论文, 河南郑州, 2018.
[13] 程璐, 陈家斌, 张艺璇, 等. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647–654.
[14] 秦子惠, 任旭, 江凯, 等. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41: 589–596.
[15] 张小飞, 邹成佳, 崔丽娜, 等. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078–2082.
[16] 苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971–978. [17] Mesterházy Á, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize–a review. Plant Breed, 2012, 131: 1–19.
[18] 宋立秋, 魏利民, 王振营, 等. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487–490.
[19] 王宝宝. 玉米穗腐病致病镰孢菌鉴定与寄主抗性. 中国农业科学院硕士学位论文, 北京, 2020. [20] Gauthier L, Bonnin-Verdal M N, Marchegay G, et al. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int J Food Microbiol, 2016, 221: 61–68. [21] Yuan G S, Shi J H, Zeng C, et al. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. BMC Genomics, 2024, 25: 733.
[22] 杨俊伟, 王建军, 赵变平, 等. 玉米新品种抗禾谷镰孢菌穗腐病鉴定与评价. 河北农业科学, 2020, 24(4): 47–49.
[23] 夏玉生, 郭成, 温胜慧, 等. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61–71.
[24] 段灿星, 崔丽娜, 夏玉生, 等. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155–2167.
[25] 何玥, 郭爽, 王栋, 等. 玉米地方种质资源对禾谷镰孢菌穗腐病的抗性评价. 耕作与栽培, 2023, 43(5): 1–5.
[26] 陈鸽, 王敏, 周德龙, 等. 523份玉米自交系对禾谷镰孢穗腐病和灰斑病的抗性鉴定. 中国农业大学学报, 2025, 30(1): 27–37. [27] Butrón A, Reid L M, Santiago R, et al. Inheritance of maize resistance to Gibberella and Fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant Pathol, 2015, 64: 1053–1060. [28] Martin M, Dhillon B S, Miedaner T, et al. Inheritance of resistance to Gibberella ear rot and deoxynivalenol contamination in five flint maize crosses. Plant Breed, 2012, 131: 28–32. [29] Xia Y S, Wang B B, Zhu L H, et al. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing. Front Plant Sci, 2022, 13: 954546. [30] Reinprecht Y, Wu X G, Yan S, et al. A microarray-based approach for identifying genes for resistance to Fusarium Graminearum in maize (Zea Mays L.). Cereal Res Commun, 2008, 36: 253–259. [31] Yuan G S, Chen B F, Peng H, et al. QTL mapping for resistance to ear rot caused by Fusarium graminearum using an IBM Syn10 DH population in maize. Mol Breed, 2020, 40: 91. [32] Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. Front Plant Sci, 2022, 13: 1050891. [33] 王梓钰, 李世界, 闻竞, 等. 玉米禾谷镰孢穗腐病抗性的QTL定位. 玉米科学, 2022, 30(4): 31–39. Wang Z Y, Li S J, Wen J, et al. QTL mapping of resistance to Gibberella ear rot in maize. J Maize Sci, 2022, 30(4): 31–39 (in Chinese with English abstract). [34] 周帆, 杨喆, 崔婷茹, 等. 玉米ZmBT2b基因在抵抗禾谷镰孢侵染中的功能研究. 河北农业大学学报, 2024, 47(1): 19–28. Zhou F, Yang Z, Cui T R, et al. Function of ZmBT2b gene in maize resistance to Fusarium graminearum. J Hebei Agric Univ, 2024, 47(1): 19–28 (in Chinese with English abstract).
[35] 闻竞, 邢跃先, 沈彦岐, 等. 玉米禾谷镰孢穗腐病抗性基因的挖掘. 分子植物育种, 2025: 1–13.
[36] 高佳琪. 玉米穗腐病抗性与花期性状的全基因组关联分析. 云南大学硕士学位论文, 云南昆明, 2022. [37] Yao L S, Li Y M, Ma C Y, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535–1551. [38] Zhang Y, Peng Y X, Liu J, et al. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. Plant Physiol, 2023, 192: 648–665. [39] Guo J, Yao Q, Dong J, et al. Immunophilin FKB20-2 participates in oligomerization of photosystem I in Chlamydomonas. Plant Physiol, 2024, 194: 1631–1645.
[40] 段明. 低温胁迫下番茄类囊体膜抗坏血酸过氧化物酶基因的表达和功能研究. 山东农业大学博士学位论文, 山东泰安, 2012. [41] Yin W C, Xiao Y H, Niu M, et al. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell, 2020, 32: 2292–2306.
[42] 查笑君, 马伯军, 潘建伟, 等. 植物富亮氨酸重复类受体蛋白激酶的研究进展. 浙江师范大学学报(自然科学版), 2010, 33(1): 7–12. [43] 安炎黄. 磷脂酶参与冬凌草甲素对拟南芥的化感潜能作用. 西北师范大学硕士学位论文, 甘肃兰州, 2019. An Y H. Phospholipase is Involved in the Allelopathy of Oridonin in Arabidopsis thaliana. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract). [44] 王秀娟, 高山, 王国泽. 磷脂酶D的抗逆特性及其活性检测研究. 湖北农业科学, 2014, 53: 998–1000. Wang X J, Gao S, Wang G Z. Characteristics of stress tolerance and activity detection of phospholipase D. Hubei Agric Sci, 2014, 53: 998–1000 (in Chinese with English abstract). [45] Walley J W, Sartor R C, Shen Z X, et al. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814–818. [46] 陈道波, 王教瑜, 肖琛闻, 等. ABC转运蛋白结构及在植物病原真菌中的功能研究进展. 生物化学与生物物理进展, 2021, 48: 309–316. Chen D B, Wang J Y, Xiao C W, et al. Research progress in structure of ABC transporters and their function in pathogenic fungi. Prog Biochem Biophys, 2021, 48: 309–316 (in Chinese with English abstract). [47] Kovalchuk A, Driessen A J M. Phylogenetic analysis of fungal ABC transporters. BMC Genomics, 2010, 11: 177. [48] Aryal B, Xia J, Hu Z H, et al. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol, 2023, 33: 2008–2023.e8. [49] 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展. 生物技术通报, 2022, 38(8): 12–23. Wei X X, Lan H Y. Advances in the regulation of plant MYB transcription factors in secondary metabolism and stress response. Biotechnol Bull, 2022, 38(8): 12–23 (in Chinese with English abstract).
[50] 蒋滔. 玉米抗灰斑病主效QTL-qGLS8候选基因的功能鉴定与分析. 贵州大学硕士学位论文, 贵州贵阳, 2023. [51] Armijo G, Salinas P, Monteoliva M I, et al. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. Mol Plant Microbe Interact, 2013, 26: 1395–1406. [52] Nie Y B, Ji W Q. Cloning and characterization of disease resistance protein RPM1 genes against powdery mildew in wheat line N9134. Cereal Res Commun, 2019, 47: 473–483. [53] Wang A J, Shu X Y, Jing X, et al. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. Plant Biotechnol J, 2021, 19: 1553–1566.
[54] 陈雷. 玉米磷脂酶D基因家族的克隆及功能分析. 四川农业大学硕士学位论文, 四川雅安, 2019. [55] Li J X, Yu F, Guo H, et al. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res, 2020, 30: 61–69. |
| [1] | 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526. |
| [2] | 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1和ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329. |
| [3] | 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306. |
| [4] | 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340. |
| [5] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
| [6] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
| [7] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
| [8] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
| [9] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
| [10] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
| [11] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
| [12] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
| [13] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
| [14] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
| [15] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
|
||