欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (03): 430-435.

• 研究论文 • 上一篇    下一篇

基于碳氮代谢的水稻氮含量及碳氮比光谱估测

薛利红;杨林章;范小晖   

  1. 中国科学院南京土壤研究所,江苏南京210008
  • 收稿日期:2005-02-03 修回日期:1900-01-01 出版日期:2006-03-12 网络出版日期:2006-03-12
  • 通讯作者: 杨林章

Estimation of Nitrogen Content and C/N in Rice Leaves and Plant with Canopy Reflectance Spectra

XUE Li-Hong;YANG Lin-Zhang and FAN Xiao-Hui   

  1. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu China
  • Received:2005-02-03 Revised:1900-01-01 Published:2006-03-12 Published online:2006-03-12
  • Contact: YANG Lin-Zhang

摘要:

碳氮代谢为植物生长发育提供物质基础,因此碳氮含量及碳氮比的无损快速估测对植物的生长调控有着极其重要的作用。本文系统研究了水稻7个不同氮肥水平下的碳氮代谢特征及其与冠层反射光谱特征之间的关系。结果表明,植株碳氮含量及碳氮比与大多数比值植被指数、归一化植被指数及差值植被指数关系密切,比值植被指数与归一化植被指数的表现一致,差值植被指数略有不同,其中碳氮比的相关性与氮含量类似。氮含量与510 nm和460 nm构成的比值和归一化植被指数的关系最佳,不受生育期的影响,可用统一的方程来预测;碳氮比则需分阶段建模较好,生育后期(抽穗期和灌浆盛期)以ND(1650,710)最好。经其它独立数据的验证表明,模型对氮含量的估测精度在叶片水平上为80.51%,在植株水平上为76.36%,预测的RMSE分别为0.20和0.26,叶片和植株碳氮比的估测精度分别为81.09%和70.70%,预测的RMSE分别为1.64和3.95。表明通过植被指数的计算可以定量地评估水稻氮含量及碳氮比。

关键词: 水稻, 冠层光谱, 碳氮比, 植被指数

Abstract:

Carbon (C), nitrogen (N) metabolism provides the substance basis of plant growth and development, and non-destructive, quick assessments of C, N content (%) and C/N with remote sensing are very necessary for the research of plant growth regulation, carbon and nitrogen cycling, and global climate change. In order to study the feasibility of the C, N content and C/N measurements with canopy reflectance spectra, canopy spectral reflectance (460–1 650 nm) data at tillering, heading and filling stage of rice (Oryza sativa L.) in field experiments with different N levels at two different sites were recorded with MSR-16 radiometer, and corresponding C, N content and C/N were also measured. Then the relation of C, N content and C/N in leaves and plant to reflectance of single band and all two-band combinations in the ratio vegetation index (RVI, λ12), normalized difference vegetation index NDVI (λ1-λ2)/(λ12), and difference vegetation index (DVI, λ1-λ2) were analyzed. Results showed that strong correlation existed between C, N contents and C/N in rice leaves/plant and spectral vegetation indices, the performance of RVIs was consistent with NDVIs, while a little difference with DVIs. Correlogram of C/N to different spectral vegetation indices was similar with that of N (Fig.2). Ratio and normalized difference vegetation index composed by 510 nm and 460 nm was significantly correlated with N content in leaves and plant, and data from three different development stages can be fitted with an uniform equation (Fig.3). While the relationship of C/N and vegetation indices at post-heading (including heading stage and filling stage) was better than that at whole growing stage, with the best index of ND(1650,710). Tests with other independent dataset showed that the estimation precision of N content and C/N in leaves and plant was 80.51%, 81.09%, 76.36% and 70.70%, with the RMSE of 0.20, 0.26, 1.64 and 3.95 respectively (Fig.4). This suggests that vegetation indices can be used to estimate N content and C/N in rice.

Key words: Rice, Canopy reflectance spectra, Nitrogen, Carbon, C/N, Vegetation index

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!