作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2176-2183.doi: 10.3724/SP.J.1006.2008.02176
闫川;丁艳锋;王强盛;李刚华;刘正辉;缪小建;郑永美;魏广彬;王绍华*
YAN Chuan,DING Yan-Feng,WANG Qiang-Sheng,LI Gang-Hua,LIU Zheng-Hui,MIAO Xiao-Jian,ZHENG Yong-Mei,WEI Guang-Bin,WANG Shao-Hua*
摘要:
以2个籼、粳稻品种为材料,设置高、中、低3个穗肥处理,以空白为对照,构建不同的群体结构,研究穗肥施量对植株形态和群体生态及穗叶温度的影响。结果表明,穗肥施量对穗长、穗弯曲度、叶长和叶角有明显影响;不同穗肥处理群体内部温度、湿度、光照强度和CO2浓度等微气象因子具有一定差异,中肥处理具有良好的群体微气象环境;此外,中肥处理群体具有适宜的LAI、净光合速率和蒸腾速率,冠层温度较低;施肥水平显著影响植株器官的温度,穗叶的温度随穗肥施量的增加而降低,中肥与高肥处理植株穗叶的温度差异不显著,但与低肥和空白处理差异显著。研究结果说明通过优化田间管理如合理的施肥来构建良好的群体,对降低植株穗叶和冠层温度以提高水稻抗热害能力效果显著。
[1] Houghton J T, Ding Y, Griggs D J. Climate Change 2001: Scientific Basis. New York: Cambridge University Press, 2001. pp 25-28 [2] Peng S B, Huang J L, Sheehy J E. Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971-9975 [3] IPCC. Climate Change 2001—the Scientific Basis. Cam-bridge, U K: Cambridge University, 2001. pp 101-125 [4] Ge D-K(葛道阔), Jin Z-Q(金之庆), Shi C-L(石春林), Gao L-Z(高亮之). Gradual impacts of climate change on rice production and adaptation strategies in southern China. Jiangsu J Agric Sci (江苏农业学报), 2002, 18(1): 1-8(in Chinese with English abstract) [5] Krishnan P, Swain D K, Chandra Bhaskar B, Nayak S K, Dash R N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ, 2007, 122: 233-242 [6] Yang H-C(杨惠成), Huang Z-Q(黄仲青), Jiang Z-Y(蒋之埙), Wang X-W(王相文). Effects of high temperature on yield and its defense technique of medium rice in 2003. J Anhui Agric Sci (安徽农业科学), 2004, 32(1): 3-4(in Chinese with Eng-lish abstract) [7] Horie T, Matsui T, Nakagawa H. Effect of elevates CO2 and global climate change on rice yield in Japan. In: Omasa K, Kai K, Toda H, eds. Climate Change and Plants in East Asia. Tokyo, Japan: Springer-Verlag, 1996. pp 39-56 [8] Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot, 2002, 89: 683-687 [9] Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 2000, 3: 430-434 [10] Garrity D P, O'Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J, 1995, 87: 773-779 [11] Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G. Wheat yield progress associated with a higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467-1475 [12] Tumer N C, O'Toole J C, Cruz R T. Response of seven di-verse rice cultivars to water deficits: I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res, 1986, 13: 257-271 [13] Chauham J S, Moya T B, Singh R K, Singh C V. Influence of soil moisture stress during reproductive stage on physiologi- cal parameters and grain yield in upland rice. Oryza, 1999, 36: 130-135 [14] Zhang W-Z(张文忠), Han Y-D(韩亚东), Du H-J(杜宏绢), Huang R-D(黄瑞东), Chen W-F(陈温福). Relationship be-tween canopy temperature and soil water content, yield com-ponents at flowering stage in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(1): 99-102(in Chinese with English abstract) [15] Mackill D J, Coffmam W R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z Pflan-zenzuecht, 1983, 91: 61-69 [16] Xu W-G(许为钢), Hu L(胡琳), Gai J-Y(盖钧镒). A study on heat tolerance of wheat cultivars. Acta Agric Boreali-Sin (华北农学报), 1999, 14(2): 1-5(in Chinese with English ab-stract) [17] Prasad P V V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet ferti- lity and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398-411 [18] Zhang B(张彬), Zheng J-C(郑建初), Yang F(杨飞), Tian Y-L(田云录), Peng L(彭兰), Li M-A(李明安), Bian X-M(卞新民), Zhang W-J(张卫建). Effects of fertilization level on panicle temperature at heading stage of rice. Chin J Rice Sci (中国水稻科学), 2007, 21(2): 191-196(in Chinese with Eng-lish abstract) [19] Sun C-M(孙成明), Fu G-C(伏广成), Dong G-C(董桂春), Yan D-H(阎德湖), Wang Y-L(王余龙). Study on the relationship between rice leaf in heading stage and yield component. Chin Agric Sci Bull (中国农学通报), 2005, 21(10): 132-135(in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
|