欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2176-2183.doi: 10.3724/SP.J.1006.2008.02176

• 耕作栽培·生理生化 • 上一篇    下一篇

穗肥施量对水稻植株形态、群体生态及穗叶温度的影响

闫川;丁艳锋;王强盛;李刚华;刘正辉;缪小建;郑永美;魏广彬;王绍华*   

  1. 南京农业大学农业部作物生长调控重点开放实验室 / 江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2008-03-06 修回日期:2008-05-03 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 王绍华
  • 作者简介:闫川(1981-),男,安徽宿州人,博士研究生,主要从事作物生理生态研究
  • 基金资助:

    国家粮食丰产科技工程项目(2006BAD02A03);国家自然科学基金项目(30471016)

Effect of Panicle Fertilizer Application Rate on Morphological, Ecological Characteristics, and Organ Temperature of Rice

YAN Chuan,DING Yan-Feng,WANG Qiang-Sheng,LI Gang-Hua,LIU Zheng-Hui,MIAO Xiao-Jian,ZHENG Yong-Mei,WEI Guang-Bin,WANG Shao-Hua*   

  1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture / High-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2008-03-06 Revised:2008-05-03 Published:2008-12-12 Published online:2008-10-10
  • Contact: WANG Shao-Hua

摘要:

以2个籼、粳稻品种为材料,设置高、中、低3个穗肥处理,以空白为对照,构建不同的群体结构,研究穗肥施量对植株形态和群体生态及穗叶温度的影响。结果表明,穗肥施量对穗长、穗弯曲度、叶长和叶角有明显影响;不同穗肥处理群体内部温度、湿度、光照强度和CO2浓度等微气象因子具有一定差异,中肥处理具有良好的群体微气象环境;此外,中肥处理群体具有适宜的LAI、净光合速率和蒸腾速率,冠层温度较低;施肥水平显著影响植株器官的温度,穗叶的温度随穗肥施量的增加而降低,中肥与高肥处理植株穗叶的温度差异不显著,但与低肥和空白处理差异显著。研究结果说明通过优化田间管理如合理的施肥来构建良好的群体,对降低植株穗叶和冠层温度以提高水稻抗热害能力效果显著。

关键词: 水稻, 穗肥, 形态, 群体生态, 穗叶温度

Abstract:

Using 2 japonica and indica rice cultivars with three panicle fertilizer application rate treatments and a control, different populations of rice were constructed, and the effect of panicle fertilizer application rate (PFAR) on morphological, ecological characteristics and organ temperature of rice were studied. The results showed that PFAR had a significant effect on length of panicle, panicle camber, length of leaf and leaf angle. It was also observed that air temperature, humidity, light intensity and content of CO2 were also affected by different PFAR treatments, medium PFAR was proved to be best for microclimate within rice population. Besides, there were felicitous leaf area index, length of second leaf, photosynthetic rate, transpiration and lower canopy temperature at medium PFAR. The temperature of plant organs was significantly affected by PFAR, the more the PFAR, the lower the temperature of panicle and leaf. The organ temperature was significantly different at the 0.05 level between medium PFAR and lower PFAR, control treatments, while not significantly between medium PFAR and higher PFAR. This study clearly showed that appropriate agronomic practices, such as PFAR, have a significant effect on the temperature of plant organs and canopy, and also enhance the resistance to heat stress.

Key words: Rice, Panicle fertilizer, Morphological, Microclimate, Temperature of panicle and leaf

[1] Houghton J T, Ding Y, Griggs D J. Climate Change 2001: Scientific Basis. New York: Cambridge University Press, 2001. pp 25-28
[2] Peng S B, Huang J L, Sheehy J E. Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971-9975
[3] IPCC. Climate Change 2001—the Scientific Basis. Cam-bridge, U K: Cambridge University, 2001. pp 101-125
[4] Ge D-K(葛道阔), Jin Z-Q(金之庆), Shi C-L(石春林), Gao L-Z(高亮之). Gradual impacts of climate change on rice production and adaptation strategies in southern China. Jiangsu J Agric Sci (江苏农业学报), 2002, 18(1): 1-8(in Chinese with English abstract)
[5] Krishnan P, Swain D K, Chandra Bhaskar B, Nayak S K, Dash R N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ, 2007, 122: 233-242
[6] Yang H-C(杨惠成), Huang Z-Q(黄仲青), Jiang Z-Y(蒋之埙), Wang X-W(王相文). Effects of high temperature on yield and its defense technique of medium rice in 2003. J Anhui Agric Sci (安徽农业科学), 2004, 32(1): 3-4(in Chinese with Eng-lish abstract)
[7] Horie T, Matsui T, Nakagawa H. Effect of elevates CO2 and global climate change on rice yield in Japan. In: Omasa K, Kai K, Toda H, eds. Climate Change and Plants in East Asia. Tokyo, Japan: Springer-Verlag, 1996. pp 39-56
[8] Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot, 2002, 89: 683-687
[9] Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 2000, 3: 430-434
[10] Garrity D P, O'Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J, 1995, 87: 773-779
[11] Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G. Wheat yield progress associated with a higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467-1475
[12] Tumer N C, O'Toole J C, Cruz R T. Response of seven di-verse rice cultivars to water deficits: I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res, 1986, 13: 257-271
[13] Chauham J S, Moya T B, Singh R K, Singh C V. Influence of soil moisture stress during reproductive stage on physiologi- cal parameters and grain yield in upland rice. Oryza, 1999, 36: 130-135
[14] Zhang W-Z(张文忠), Han Y-D(韩亚东), Du H-J(杜宏绢), Huang R-D(黄瑞东), Chen W-F(陈温福). Relationship be-tween canopy temperature and soil water content, yield com-ponents at flowering stage in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(1): 99-102(in Chinese with English abstract)
[15] Mackill D J, Coffmam W R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z Pflan-zenzuecht, 1983, 91: 61-69
[16] Xu W-G(许为钢), Hu L(胡琳), Gai J-Y(盖钧镒). A study on heat tolerance of wheat cultivars. Acta Agric Boreali-Sin (华北农学报), 1999, 14(2): 1-5(in Chinese with English ab-stract)
[17] Prasad P V V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet ferti- lity and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398-411
[18] Zhang B(张彬), Zheng J-C(郑建初), Yang F(杨飞), Tian Y-L(田云录), Peng L(彭兰), Li M-A(李明安), Bian X-M(卞新民), Zhang W-J(张卫建). Effects of fertilization level on panicle temperature at heading stage of rice. Chin J Rice Sci (中国水稻科学), 2007, 21(2): 191-196(in Chinese with Eng-lish abstract)
[19] Sun C-M(孙成明), Fu G-C(伏广成), Dong G-C(董桂春), Yan D-H(阎德湖), Wang Y-L(王余龙). Study on the relationship between rice leaf in heading stage and yield component. Chin Agric Sci Bull (中国农学通报), 2005, 21(10): 132-135(in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!