作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1236-1243.doi: 10.3724/SP.J.1006.2009.01236
南海洋,李英慧**,常汝镇,邱丽娟*
NAN Hai-Yang,LI Ying-Hui**,CHANG Ru-Zhen,QIU Li-Juan*
摘要:
大豆胞囊线虫病是严重危害大豆生产的重要病害之一,根据抗病候选基因发掘标记可以为分子标记辅助选择抗病材料提供标记资源。本研究通过对大豆胞囊线虫抗病候选基因rhg1的序列比对分析,发现4个插入/删除位点,针对其中3个多碱基插入/缺失位点开发了InDel标记。应用开发的3个InDel标记对33份栽培大豆进行基因型鉴定,共检测到等位变异11个,平均每个位点3.67个。其中rhg1-I1位点有等位变异5个,rhg1-I2位点有等位变异2个;rhg1-I4位点有等位变异4个。各等位变异发生频率范围为0.8%~77.3%。InDel标记与大豆胞囊线虫抗性间的关联分析表明,rhg1-I4为抗性相关标记,对抗病资源的检出效率为88.2%,对感病资源的检出效率为100%。该标记的288 bp等位变异和294 bp等位变异为抗病相关等位变异,269 bp等位变异和272 bp等位变异为感病相关等位变异。此标记与常用于标记辅助选择的Satt309配合鉴定可以提高SCN抗病资源的检测效率。
[1] Liu W-Z(刘维志), Liu Y(刘晔), Chen P-S(陈品三). Preliminary report of identify the races of SCN in some city & county of Northeast. J Shenyang Agric Coll (沈阳农学院学报), 1984, (2): 74-78(in Chinese) [2] Liu H-Q(刘汉起), Shang S-G(商绍刚), Huo H(霍虹), Wu H-L(吴和礼). Resistance of soybean varieties to race 1,3 and 4 of soybean cyst nematode. Soybean Sci (大豆科学), 1989, 8(1): 113-114(in Chinese) [3] Lu W-G(卢为国), Gai J-Y(盖钧镒), Li W-D(李卫东). Sample survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai valley. Sci Agric Sin (中国农业科学),2006, 39(2): 306-312(in Chinese with English abstract) [4] Shang S-G(商绍刚), Liu H-Q(刘汉起). The distribution of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Dongbei. Soybean Sci (大豆科学), 1989, 8(4): 382(in Chinese) [5] Liu P-Y(刘佩印). Advances in study of screening and utilization for antigen to soybean cyst nematode. Heilongjiang Agric Sci (黑龙江农业科学), 2005, (6): 44-47 (in Chinese with English abstract) [6] Riggs R D, Schmidt D P. Complete characterization of the race scheme for Heterodera glycines. J Nematol, 1988, 20: 392-395 [7] Caviness C E. Breeding of Resistance to Soybean Cyst Nematode. In: Riggs R D, Wrather J A, eds. Biology and Management of the Soybean Cyst Nematode. St. Paul, Minnesota: APS Press, 1992. pp 143-156 [8] Cregan P B, Mudge J, Fickus E W, Denny R, Danesh R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811-818 [9] Arelli A P, Anand S C, Wrather J A. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene. Crop Sci, 1992, 32: 862-864 [10] Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004, 44: 1121-1131 [11] Ruben E, Aziz J, Afzal J, Njiti V N, Triwitayakorn K, Iqbal M J, Yaegashi S, Arelli P, Town C, Meksem K, Lightfoot D A. Genomic analysis of the rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genome, 2006, 276: 503-516 [12] Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci, 1994, 34: 240-246 [13] Concibido V C, Boutin S, Denny R L, Hautea R, Orf J, Young N D. Targeted comparative genome analysis and qualitative mapping of a major partial resistance gene to the soybean cyst nematode. Theor Appl Genet, 1996, 93: 234-241 [14] Webb D M, Baltazar B M, Arelli A P, Schupp J, Keim P, Clayton K, Ferreira A R, Owens T, Beavis W D. QTL affecting soybean cyst nematode resistance. Theor Appl Genet, 1995, 91: 574-581 [15] Chang S J C, Doubler T W, Kilo V, Suttner R J, Klein J, Schmidt M E, Gibson P T, Lightfoot D A. Association of loci underlying field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN) race 3. Crop Sci, 1997, 372: 965-971 [16] Prabhu R R, Njiti V, Bell-Johnson B, Johnson J E, Schmidt M E, Klein J, Lightfoot D A. Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers. Crop Sci, 1999, 39: 982-987 [17] Meksem K, Ruben E, Hyten D L, Schmidt M E, Lightfoot D A. High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman (TM) probes. Mol Breed, 2001, 7: 63-71 [18] Yue P, Sleper D A, Arelli P R. Mapping resistance of multiple races of Heterodera glycines in soybean PI89772. Crop Sci, 2001, 41: 1589-1595 [19] Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci, 2006, 46: 224-233 [20] Goffinet B, Gerber S. Quantitative trait loci: A meta-analysis.Genetics, 2000, 155: 463-473 [21] Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations. Crop Sci, 2006, 46: 595-602 [22] Lightfoot D A, Meksem K. Novel polynucleotides and polypeptides relating to loci underlying resistance to soybean cyst nematode and methods of use thereof. Patent pending # 09/772, 134. Filing date 2000-01-29 [23] Hauge B M, Wang M L, Parsons J D, Parnell L D. Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. WO 01/51627 PCT/US01/00552 Patent # 20030005491 [24] Concibido V C, Lange D A, Denny R L, Hautea R, Orf J, Young N D. Genome mapping soybean cyst nematode resistance genes in Peking, PI90763 and PI88788 using DNA markers. Crop Sci, 1997, 37: 258-264 [25] Heer J A, Knap H T, Mahalingam R, Shipe E R, Arelli P R, Matthews B F. Molecular markers for resistance to Heterodera glycines in advanced soybean germplasm. Mol Breed, 1998, 4: 359-367 [26] Meksem K, Pantazopoylos P, Niti V N, Hyten L D, Arelli P R. ‘Forrest’ resistance to soybean cyst nematode is bigenic: Saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet, 2001, 103: 710-714 [27] Mudege J, Cregan P B. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611-1615 [28] Qiu B X, Arelli P R, Sleper D A. RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’× ‘Essex’ population. Theor Appl Genet, 1999, 98: 356-364 [29] Ma Y S, Wang W H, Wang L X, Ma F M, Wang P W, Chang R Z, Qiu L J. Genetic diversity of soybean and the establishment of a core collection focused on resistance to soybean cyst nematode. J Integr Plant Biol, 2006, 48: 722-731 [30] Liu M S, Amirkhanian V D. DNA fragment analysis by an affordable multiple-channel capillary electrophoresis system (Short communication). Electrophoresis-Weinheim, 2003, 24: 93-95 [31] Mills R E, Luttig C T, Larkins C E, Beauchamp A, Tsui C, Pittard W S, Devine S E. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res,2006, 16: 1182-1190 [32] Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Lily Q, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205 [33] Feltus F A, Wan J, Schulze S R, Wan J, Estill J C, Jiang N, Paterson A H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14: 1812-1819 [34] Dinakar B, Maureen D, Mike H, Robin W, Dave V, James C R. Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol, 2002, 48: 539-547 [35] Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, Van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: Gene distribution, haplotype and SNP analysis. Genetics, 2007, 176: 685-696 [36] Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat Rev Genet, 2004, 5: 435-445 [37] Li Y H, Guan R X, Ma Y S, Wang L X, Li L H, Lin F Y, Luan W J, Chen P Y, Yan Z, Guan Y, Zhu L, Ning X C, Smulders M J M, Li W, Piao R H, Cui Y H, Yu Z M, Guan M, Chang R Z, Liu Z X, Hou A F, Shi A N, Zhang B, Zhu S L, Qiu L J. Genetic structure and diversity of cultivated soybean [Glycine max (L.) Merr.] landraces in China. Theor Appl Genet, 2008, 117: 857-871Feng F-J(冯芳君), Luo L-J(罗利军), Li-Y(李荧), Zou L-G(周立国), Xu X-Y(徐小艳), Wu J-H(吴金红), Chen H-W(陈宏伟), Chen L(陈亮), Mei H-W(梅捍卫). Comparative analysis of polymorphism of InDel and SSR markers in rice. Mol Plant Breed (植物分子育种), 2005, 3(5): 725-730(in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[13] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[14] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|