作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1740-1747.doi: 10.3724/SP.J.1006.2014.01740
刘鑫燕1,2,朱孔志1,张昌泉1,洪燃1,孙鹏1,汤述翥1,顾铭洪1,刘巧泉1,*
LIU Xin-Yan1,2,ZHU Kong-Zhi1,ZHANG Chang-Quan1,HONG Ran1,SUN Peng1,TANG Su-Zhu1,GU Ming-Hong1,LIU Qiao-Quan1,*?
摘要:
糊化温度(gelatinization temperature, GT)是评价稻米蒸煮与食味品质的重要因素之一, 除受一主效基因控制外, 还受多个微效基因的影响。本研究利用粳稻品种日本晴和籼稻品种9311作为受体和供体来源的一套染色体片段代换系为研究对象, 于2010—2011年连续2年分别于2个环境内种植, 测定各株系稻米的糊化温度(碱消值), 利用t测验与轮回亲本比较。结合高通量重测序技术鉴定各代换系的基因型, 以一年两地检出的极显著差异位点作为一个QTL, 共检测到4个控制GT的微效QTL, 即qGT2-1、qGT7-1、qGT8-1和qGT12-1, 分别位于第2、7、8和12号染色体上。加性效应分析结果显示, 4个QTL的效应值均为负值, 表明来自籼稻品种9311的这4个片段对碱消值的效应均为负效应。其中qGT7-1和qGT12-12个QTL在2年4个环境均被检测到, 遗传效应的趋势也一致, 加性效应贡献率为11.31%~28.95%。以受体亲本碱消值差异最大的代换系N53株系及亲本为材料, 对稻米淀粉精细结构进行分析, 推测支链淀粉中短链含量的减少可能会引起GT的升高。上述结果为进一步精细定位和克隆相应QTL及开展稻米品质改良的分子育种奠定了基础。
[1]包劲松. 应用RVA测定米粉淀粉成糊温度. 中国水稻科学, 2007, 21: 543–546Bao J S. Accurate measurement of pasting temperature of rice flour by a rapid visco-analyser. Chin J Rice Sci, 2007, 21: 543–546 (in Chinese with English abstract)[2]Bhattacharya K R. Gelatinization temperature of rice starch and its determination. In: Brady N C, ed. Proceeding of the Workshop on Chemical Basis of Rice Grain Quality. Los Banos, Philippines: IRRI, 1979. pp 231–249[3]Kudo M. Genetical and thremmatological studies of characters, physiological or ecological, in the hybrids between ecological rice groups. Bull Natl Inst Agric Sci Ser D, 1968, 19: 1–84[4]He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502–508[5]Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res, 2000, 7: 93–101[6]严长杰, 徐辰武, 裔传灯, 梁国华, 朱立煌, 顾铭洪. 利用SSR标记定位水稻GT的QTLs. 遗传学报, 2001, 28: 1006-1011Yan C J, XU C W, Yi C D, Liang G H, Zhu L H, Gu M H. Genetic analysis of gelatinization temperature in rice via microsatellite (SSR) markers. Acta Genet Sin, 2001, 28: 1006–1011 (in Chinese with English abstract) [7]高振宇, 曾大力, 崔霞, 周奕华, 颜美仙, 黄大年, 李家洋, 钱前. 水稻稻米GT控制基因ALK的图位克隆及其序列分析. 中国科学(C辑), 2004, 33(6): 481–487Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature in rice. Sci China (Ser C), 2004, 33: 481–487 (in Chinese with English abstract) [8]张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段代换系定位控制稻米淀粉黏滞性谱QTL. 中国水稻科学, 2013, 27: 56–64Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q. Mapping of QTLs for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines. Chin J Rice Sci, 2013, 27: 56–64 (in Chinese with English abstract) [9]Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011, 38: 603–611[10]Little R R, Hilder G B, Dawson E H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem, 1958, 35: 111–126[11]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147[12]何风华, 席章营, 瑞珍, Akshay T, 张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报, 2005, 32: 825–831He F H, Xi Z Y, Zeng R Z, Akshay T, Zhang G Q. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32: 825–831 (in Chinese with English abstract)[13]Zhu L J, Liu Q Q, Sang Y J, Gu M H, Shi Y C. Underlying reasons for waxy rice flours having different pasting properties. Food Chem, 2010, 120: 94–100[14]池晓菲, 吴殿星, 楼向阳, 夏英武, 舒庆尧. 五种禾谷类作物淀粉糊化特性的比较研究. 作物学报, 2003, 29: 300–304Chi X F, Wu D X, Lou X Y, Xia Y W, Shu Q Y. Comparative studies on the starch gelatinization characteristics of five cereal crops. Acta Agron Sin, 2003, 29: 300–304 (in Chinese with English abstract)[15]成明华, 关东胜, 张慧敏, 李里特, 沈欣. 10种稻米的品质分析. 粮油食品科技, 2001, 9(6): 13–16Cheng M H, Guang D S, Zhang H M, Li L T, Shen X. Quality analysis of ten varieties of rice. Sci Technol Cereals Oils Foods, 2001, 9(6): 13–16 (in Chinese with English abstract)[16]李欣, 汤述翥, 陈宗祥, 顾铭洪. 粳稻米GT的遗传研究. 江苏农学院学报, 1995, 16(1): 15–20Li X, Tang S Z, Chen Z X, Gu M H. Genetic studies of gelatinization temperature in japonica rice. J Jiangsu Agric Coll, 1995, 16(1): 15–20 (in Chinese)[17]徐辰武, 莫惠栋, 张爱红, 朱庆森. 籼-粳杂种稻米品质性状的遗传控制. 遗传学报, 1995, 22: 192–198Xu C W, Mo H D, Zhang A H, Zhu Q S. Genetic control of quality traits of rice grains in indica-japoniva hybrids. Acta Genet Sin, 1995, 22: 192–198 (in Chinese with English abstract)[18]Umemoto T, Yano M, Satoh H, Shomura A, Nakamura. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002, 104: 1–8[19]Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J Integr Plant Biol, 2011, 53: 756–765[20]Govindaraj P, Vinod K K, Arumugachamy S, Maheswaran M. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. Euphytica, 2009, 166: 165–176[21]Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005, 110: 1445–1452[22]Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009, 106: 21760–21765[23]Radhika Reddy K, Subramanian R, Zakiuddin A S, Bhattacharya K R. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem, 1994, 71: 548–552[24]Bao J S, Zheng X W, Xia Y W, He P, Shu Q Y, Lu X, Chen Y, Zhu L H. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 280–284[25]Bao J S, Xiao P, Hiratsuka M, Sun M, Umemoto T. Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch, 2009, 61: 431–437 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|