欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1740-1747.doi: 10.3724/SP.J.1006.2014.01740

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用9311来源的粳型染色体片段代换系定位控制稻米糊化温度的微效QTL

刘鑫燕1,2,朱孔志1,张昌泉1,洪燃1,孙鹏1,汤述翥1,顾铭洪1,刘巧泉1,*   

  1. 1 扬州大学农学院 / 江苏省作物遗传生理国家重点实验室培育建设点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009;
    2 南通大学生命科学学院, 江苏南通 226019
  • 收稿日期:2014-03-14 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-07-25
  • 通讯作者: 刘巧泉, E-mail: qqliu@yzu.edu.cn; Tel: 0514-87996648
  • 基金资助:

    本研究由本研究由国家重点基础研究发展计划(973计划)项目(2013CBA01402), 教育部科学技术研究重点项目, 江苏省杰出青年基金项目(BK2012010), 江苏省普通高校研究生科研创新计划项目(CXZZ13_0904)和大学生学术科技创新基金项目(b13097)资助。

Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background

LIU Xin-Yan1,2,ZHU Kong-Zhi1,ZHANG Chang-Quan1,HONG Ran1,SUN Peng1,TANG Su-Zhu1,GU Ming-Hong1,LIU Qiao-Quan1,*?   

  1. 1 Jiangsu Key Laboratory for Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; 2 College of Life Science, Nantong University, Nantong 226019, China
  • Received:2014-03-14 Revised:2014-07-06 Published:2014-10-12 Published online:2014-07-25
  • Contact: 刘巧泉, E-mail: qqliu@yzu.edu.cn; Tel: 0514-87996648

摘要:

糊化温度(gelatinization temperature, GT)是评价稻米蒸煮与食味品质的重要因素之一, 除受一主效基因控制外, 还受多个微效基因的影响。本研究利用粳稻品种日本晴和籼稻品种9311作为受体和供体来源的一套染色体片段代换系为研究对象, 2010—2011年连续2年分别于2个环境内种植, 测定各株系稻米的糊化温度(碱消值), 利用t测验与轮回亲本比较。结合高通量重测序技术鉴定各代换系的基因型, 以一年两地检出的极显著差异位点作为一个QTL, 共检测到4个控制GT的微效QTL, qGT2-1qGT7-1qGT8-1qGT12-1, 分别位于第27812号染色体上。加性效应分析结果显示, 4QTL的效应值均为负值, 表明来自籼稻品种9311的这4个片段对碱消值的效应均为负效应。其中qGT7-1qGT12-12QTL24个环境均被检测到, 遗传效应的趋势也一致, 加性效应贡献率为11.31%~28.95%受体亲本碱消值差异最大的代换系N53株系及亲本为材料, 对稻米淀粉精细结构进行分析, 推测支链淀粉中短链含量的减少可能会引起GT的升高。上述结果为进一步精细定位和克隆相应QTL及开展稻米品质改良的分子育种奠定了基础。

关键词: 水稻, 染色体片段代换系, 糊化温度, 数量性状位点定位, 代换作图

Abstract:

Gelatinization temperature (GT), one of the determinants for rice cooking and eating quality, is controlled by not only a major gene but also several minor genes. Previously, we used the japonica rice cultivar Nipponbare as the recipient and the indica 9311 as the donor to develop a population containing 38 chromosome segment substitution lines (CSSLs), and genotyped them using a high-throughput re-sequencing strategy. In this study, this population and their parents were used to map the minor quantitative trait loci (QTLs) for rice gelatinization temperature. The GT of each line was measured and expressed as alkali spreading value (ASV) under two environments (Campus and Hangji) within two years (2010–2011). After compared with that of the receptor parent by t-test, the stable QTL was identified if there was a significant difference in both environments of the same year. Finally, four QTLs for gelatinization temperature were detected, named as qGT2-1, qGT7-1, qGT8-1, and qGT12-1 located on chromosome 2, 7, 8, and 12, respectively. Two of them, qGT7-1 and qGT12-1 were stable over two years and in two environments, with contributions ranging from 11.31% to 28.95%. Additive effect analysis showed that the effect value of four QTLs were negative. These results demonstrated that the four fragments from donor parent 9311 had negative effects for the alkali spreading value. Further comparison for starch fine structure between the receptor parent and N53 line showed that the decrease of A and B1 chains with short branch length might be the possible reason for increased GT. The results pave the way for the fine mapping and subsequent cloning of these QTLs and the molecular breeding for the improvement of rice quality.

Key words: Oryza sativa L, Chromosome segment substitution lines, Gelatinization temperature, Quantitative trait locus (QTL), Substitution mapping

[1]包劲松. 应用RVA测定米粉淀粉成糊温度. 中国水稻科学, 2007, 21: 543–546



Bao J S. Accurate measurement of pasting temperature of rice flour by a rapid visco-analyser. Chin J Rice Sci, 2007, 21: 543–546 (in Chinese with English abstract)



[2]Bhattacharya K R. Gelatinization temperature of rice starch and its determination. In: Brady N C, ed. Proceeding of the Workshop on Chemical Basis of Rice Grain Quality. Los Banos, Philippines: IRRI, 1979. pp 231–249



[3]Kudo M. Genetical and thremmatological studies of characters, physiological or ecological, in the hybrids between ecological rice groups. Bull Natl Inst Agric Sci Ser D, 1968, 19: 1–84



[4]He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502–508



[5]Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res, 2000, 7: 93–101



[6]严长杰, 徐辰武, 裔传灯, 梁国华, 朱立煌, 顾铭洪. 利用SSR标记定位水稻GT的QTLs. 遗传学报, 2001, 28: 1006-1011



Yan C J, XU C W, Yi C D, Liang G H, Zhu L H, Gu M H. Genetic analysis of gelatinization temperature in rice via microsatellite (SSR) markers. Acta Genet Sin, 2001, 28: 1006–1011 (in Chinese with English abstract)



[7]高振宇, 曾大力, 崔霞, 周奕华, 颜美仙, 黄大年, 李家洋, 钱前. 水稻稻米GT控制基因ALK的图位克隆及其序列分析. 中国科学(C辑), 2004, 33(6): 481–487



Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature in rice. Sci China (Ser C), 2004, 33: 481–487 (in Chinese with English abstract)



[8]张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段代换系定位控制稻米淀粉黏滞性谱QTL. 中国水稻科学, 2013, 27: 56–64



Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q. Mapping of QTLs for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines. Chin J Rice Sci, 2013, 27: 56–64 (in Chinese with English abstract)



[9]Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011, 38: 603–611



[10]Little R R, Hilder G B, Dawson E H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem, 1958, 35: 111–126



[11]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147



[12]何风华, 席章营, 瑞珍, Akshay T, 张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报, 2005, 32: 825–831



He F H, Xi Z Y, Zeng R Z, Akshay T, Zhang G Q. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32: 825–831 (in Chinese with English abstract)



[13]Zhu L J, Liu Q Q, Sang Y J, Gu M H, Shi Y C. Underlying reasons for waxy rice flours having different pasting properties. Food Chem, 2010, 120: 94–100



[14]池晓菲, 吴殿星, 楼向阳, 夏英武, 舒庆尧. 五种禾谷类作物淀粉糊化特性的比较研究. 作物学报, 2003, 29: 300–304



Chi X F, Wu D X, Lou X Y, Xia Y W, Shu Q Y. Comparative studies on the starch gelatinization characteristics of five cereal crops. Acta Agron Sin, 2003, 29: 300–304 (in Chinese with English abstract)



[15]成明华, 关东胜, 张慧敏, 李里特, 沈欣. 10种稻米的品质分析. 粮油食品科技, 2001, 9(6): 13–16



Cheng M H, Guang D S, Zhang H M, Li L T, Shen X. Quality analysis of ten varieties of rice. Sci Technol Cereals Oils Foods, 2001, 9(6): 13–16 (in Chinese with English abstract)



[16]李欣, 汤述翥, 陈宗祥, 顾铭洪. 粳稻米GT的遗传研究. 江苏农学院学报, 1995, 16(1): 15–20



Li X, Tang S Z, Chen Z X, Gu M H. Genetic studies of gelatinization temperature in japonica rice. J Jiangsu Agric Coll, 1995, 16(1): 15–20 (in Chinese)



[17]徐辰武, 莫惠栋, 张爱红, 朱庆森. 籼-粳杂种稻米品质性状的遗传控制. 遗传学报, 1995, 22: 192–198



Xu C W, Mo H D, Zhang A H, Zhu Q S. Genetic control of quality traits of rice grains in indica-japoniva hybrids. Acta Genet Sin, 1995, 22: 192–198 (in Chinese with English abstract)



[18]Umemoto T, Yano M, Satoh H, Shomura A, Nakamura. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002, 104: 1–8



[19]Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J Integr Plant Biol, 2011, 53: 756–765



[20]Govindaraj P, Vinod K K, Arumugachamy S, Maheswaran M. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. Euphytica, 2009, 166: 165–176



[21]Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005, 110: 1445–1452



[22]Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009, 106: 21760–21765



[23]Radhika Reddy K, Subramanian R, Zakiuddin A S, Bhattacharya K R. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem, 1994, 71: 548–552



[24]Bao J S, Zheng X W, Xia Y W, He P, Shu Q Y, Lu X, Chen Y, Zhu L H. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 280–284



[25]Bao J S, Xiao P, Hiratsuka M, Sun M, Umemoto T. Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch, 2009, 61: 431–437

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!