[1] You A Q, Lu X G, Jin H J, Ren X, Liu K, Yang G C, Yang H Y, Zhu L L, He G C. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006, 172: 1287–1300
[2] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028
[3] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209
[4] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA–glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711
[5] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171
[6] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269
[7] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630
[8] Wang S K, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950–954
[9] Hu Z J, He H H, Zhang S Y, Sun F, Xin X, Wang W, Qian X, Yang J S, Luo X J.A Kelch motif—containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol, 2012, 54: 979–990
[10] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res, 2012, 22: 1666–1680
[11] Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534–21539
[12] Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 2015, 117: 119–128
[13] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol, 2015, 32: 76–84
[14] Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol, 2015, 56: 389–400
[15] Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31: 233–239
[16] Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23: 1229–1232
[17] Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv, 2015, 33: 41–52
[18] Ma X L, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol Plant, 2015, 8: 1274–1284
[19] Xu, R F, Li H, Qin R Y, Li J, Qiu C H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep, 2015, 11491. doi: 10.1038/srep11491
[20] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282
[21] Wang H, Chu Z, Ma X, Li R, Liu Y. A high through-Put protocol of plant genomic DNA preparation for PCR. Acta Agron Sin, 2013, 39: 1200–1205
[22] Bibikova M, Golic M, Golic K G, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161: 1169–1175
[23] Bibikova M, Beumer K, Trautman J K, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300: 764
[24] Dreier B, Fuller R P, Segal D J, Lund C V, Blancafort P, Huber A, Koksch B, Barbas C F. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2005, 280: 35588–35597
[25] Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29: 731–734
[26] Tesson L, Usal C, Ménoret S, Leung E, Niles B J, Remy S, Santiago Y, Vincent A I, Meng X, Zhang L, Gregory P D, Anegon I, Cost G J. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol, 2011, 29: 695–696
[27] Huang P, Xiao A, Zhou M G, Zhu Z Y, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29: 699–700
[28] Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol, 2015, 56: 41–47
[29] Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41:e188. doi: 10.1093/nar/gkt780
[30] DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 2013, 41: 4336–4343
[31] Shen B, Zhang J, Wu H Y, Wang J, Ma K, Li Z, Zhang X G, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res, 2013, 23: 720–723
[32] Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O'Connor-Giles K M. Genome engineering of Drosophila with the CRISPR RNA guided Cas9 nuclease. Genetics, 2013, 194: 1029–1035
[33] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819–823
[34] Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J W, Xi J J. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23: 465–472
[35] Dickinson D J, Ward J D, Reiner D J, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 2013, 10: 1028–1034
[36] ?ermák T, Baltes N J, ?egan R, Zhang Y, Voytas D F. High-frequency, precise modification of the tomato genome. Genome Biol, 2015, 16(1): 232. doi: 10.1186/s13059-015-0796-9
[37] Yin K, Han T, Liu G, Chen T, Wang Y, Yu A Y, Liu Y. A geminivirus-based guide RNA delivery system for CRISPR/ Cas9 mediated plant genome editing. Sci Rep, 2015, 14926. doi: 10.1038/ srep14926 |