欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1188-1200.doi: 10.3724/SP.J.1006.2016.01188

• 耕作栽培·生理生化 • 上一篇    下一篇

淮北地区水稻品种氮肥群体最高生产力及氮素吸收利用特性

梁健,李军,李晓峰,舒鹏,张洪程,霍中洋*,戴其根,许轲,魏海燕,郭保卫   

  1. 扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室, 江苏扬州 225009
  • 收稿日期:2016-01-14 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-05-30
  • 通讯作者: 霍中洋, E-mail: huozy69@163.com, Tel: 0514-87979220
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B03, 2013BAD07B09),国家公益性行业(农业)科研专项(20130310),江苏省重点研发项目(BE2015340)和扬州大学科技创新培育基金(2015CXJ042)资助。

Yield, Nitrogen Absorption and Utilization of Rice Varieties with the Highest Population Productivity of Nitrogen Fertilization in Huaibei Area

LIANG Jian,Li Jun,LI Xiao-Feng,SHU Peng,ZHANG Hong-Cheng,HUO Zhong-Yang*,DAI Qi-Gen,XU Ke,WEI Hai-Yan,GUO Bao-Wei   

  1. Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2016-01-14 Revised:2016-05-09 Published:2016-08-12 Published online:2016-05-30
  • Contact: 霍中洋, E-mail: huozy69@163.com, Tel: 0514-87979220
  • Supported by:

    This study was supported by the National Science and Technology Project of Food Production (2011BAD16B03, 2013BAD07B09), the Special Fund for Agro-scientific Research in the Public Interest (201203102), the Key Projects of Jiangsu Province (BE2015340) and Cultivation of Science and Technology Innovation Fund of Yangzhou University (2015CXJ042).

摘要:

以淮北地区有代表性的34个中熟中粳品种为试材,设置7个氮肥水平(0、150、187.5、225、262.5、300、337.5 kg hm-2),得出各品种在这7个氮肥水平下出现的最高产量,将该最高产量定义为氮肥群体最高生产力。在此基础上,按氮肥群体最高生产力高低将品种划分为4个等级,即顶层水平( ≥10.50 t hm-2)、高层水平(9.75~10.50 t hm-2)、中层水平(9.00~9.75 t hm-2)和底层水平( ≤9.00 t hm-2),比较研究不同氮肥群体最高生产力等级品种的产量及其构成因素、群体光合物质生产和氮素吸收利用差异。结果表明,所有品种的氮肥群体最高生产力均出现在225、262.5、300 kg hm-2三个氮肥水平,不同氮肥群体生产力差异极显著;随着生产力水平的提高,单位面积穗数先增加后降低,每穗粒数与群体颖花量显著增加,结实率显著下降;茎蘖成穗率、叶面积指数、光合势、有效叶面积率、高效叶面积率、粒叶比、总干物质积累量均以顶层水平最高,底层水平最低;移栽至拔节阶段的氮素积累比例表现为底层>中层>高层>顶层水平,拔节至抽穗、抽穗至成熟阶段表现为顶层>高层>中层>底层水平;移栽至拔节、拔节至抽穗及抽穗至成熟阶段的氮素吸收速率以顶层最高,顶层水平较底层水平分别高36.59%、34.36%和51.85%;随着氮肥群体生产力等级的提高,氮素吸收利用率和百千克籽粒吸氮量均提高;中熟中粳稻品种有氮低效型、氮中效型、氮较高效型和氮高效型,武运粳27、中稻1号、宁粳4号、连粳7号为高产氮高效品种。

关键词: 中熟中粳, 生产力, 产量, 氮肥吸收利用

Abstract:

The field experiment was carried out using 34 medium-maturing medium japonica rice varieties grown in Huaibei area with seven nitrogen application levels (0, 150.0, 187.5, 225.0, 262.5, 300.0, and 337.5 kg ha-1) to investigate their yield and nitrogen absorption and utilization. We defined the highest rice yields under different nitrogen levels as the highest population productivity of N fertilization. According to the highest population productivity of N fertilization, rice varieties were classified into four types including top type (TT), high type (HT), middle type (MT), and low type (LT). Yield components, population photosynthate production and N absorption and utilization of the four types rice varieties were compared. The main results indicated that optimum N levels of tested varieties corresponding to their highest population productivity of N fertilization converged in the range of 225.0-300.0 kg ha-1, while the highest grain yields were significantly different among tested varieties. With increasing productivity level, panicles per unit area increased firstly and decreased then, spikelets per panicle and total spikelet number increased and seed-setting rate declined percentage of productive tillers, leaf area index, photosynthetic potential, ratio of leaf area of productive tillers, ratio of leaf area from flag leaf to 3rd leaf, grain-leaf ratio and total dry matter accumulation increased. The ratio of nitrogen accumulation shown trend of LT > MT > HT > TT from transplanting to jointing stage and TT > HT > MT > LT from jointing to heading stage and from heading to maturity stage. N uptake rate was the fastest in the top type, and the slowest in low type and 36.59%, 34.36%, 51.85% higher in top type than in low type at translating to jointing, jointing to heading and heading to maturity growing stages. N use efficiency and N requirement for 100 kg kernel increased with increasing productivity level. According to the N use efficiency, 34 varieties were divided into low ANRE (apparent nitrogen recovery efficiency), middle ANRE, higher ANRE and high ANRE. Wuyunjing 27, Zhongdao 1, Ningjing 4, and Lianjing 7 belonged to high yield and high ANRE varieties.

Key words: Medium-maturing medium Japonica, Productivity, Yield, Nitrogen absorption and utilization

[1] 凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005, (1): 3–7
Ling Q H, Zhang H C, Ding Y F, Zhang Y B. The new development of the technique for high yield rice—precise and quantitative cultivation.China Rice, 2005, (1): 3–7 (in Chinese)
[2] 王志敏, 王树安. 发展超高产技术, 确保中国未来16亿人口的粮食安全. 中国农业科技导报, 2000, 2(7): 8–11
Wang Z M, Wang S A. Develop super high yield techniques of grain crops for feeding 1.6 billion people in future. Rev China Agric Sci Technol, 2000, 2(7): 8–11 (in Chinese)
[3] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20: 783–795
Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China. Plant Nutr Fert Sci, 2014, 20: 783–795 (in Chinese with English abstract)
[4] 刘金山, 戴健, 刘洋, 郭雄, 王朝辉. 过量施氮对旱地土壤碳、氮及供氮能力的影响. 植物营养与肥料学报, 2015, 21: 112–120
Liu J S, Dai J, Liu Y, Guo X, Wang Z H. Effects of excessive nitrogen fertilization on soil organic carbon and nitrogen and nitrogen supply capacity in dryland. Plant Nutr Fert Sci, 2015, 21: 112–120 (in Chinese with English abstract)
[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3–8
[6] 李晓, 陈春燕, 郑家奎, 唐莎. 基于文献计量学的超级稻研究动态. 中国农业科学, 2009, 42: 4197–4208
Li X, Chen C Y, Zheng J K, Tang S. Research dynamics on super rice based on bibliometric. Sci Agric Sin, 2009, 42: 4197–4208 (in Chinese with English abstract)
[7] 安宁. 我国水稻高产高效的实现途径研究. 中国农业大学博士学位论文, 北京, 2015
An N. Approach to Realize High Yield and High Nitrogen Use Efficiency of Irrigated rice in China. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract)
[8] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057–1063
Li M, Zhang H C, Li G Y, Wei H Y, Yin C Y, Ma Q, Yang X. Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. J Nucl Agric Sci, 2011, 25: 1057–1063 (in Chinese with English abstract)
[9] 苏祖芳, 周培南, 许乃霞, 张亚洁. 密肥条件对水稻氮素吸收和产量形成的影响. 中国水稻科学, 2001, 15: 281–286
Su Z F, Zhou P N, Xu N X, Zhang Y J. Effects of nitrogen and planting density on N-absorption and yield of rice. Chin J Rice Sci, 2001, 15: 281–286 (in Chinese with English abstract)
[10] 叶全宝. 不同水稻基因型对氮肥反应的差异及氮素利用效率的研究. 扬州大学博士学位论文, 江苏扬州, 2005
Ye Q B. Study on Differences in Response of Rice Genotypes to Nitrogen Fertilization and Nitrogen Use Efficiency. PhD Dissertation of Yangzhou University, Yangzhou, China, 2005 (in Chinese with English abstract)
[11] 杨雄. 不同氮肥群体最高生产力水稻品种氮磷钾的积累、分配与转运的差异性分析. 扬州大学硕士学位论文, 江苏扬州, 2012
Yang X. The Accumulation, Distribution and Translocation of NPK of Rice Varieties with Different Productivity Levels. MS Thesis of Yangzhou University, Yangzhou, China, 2012 (in Chinese with English abstract)
[12] 孟天瑶, 许俊伟, 邵子彬, 葛梦婕, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 郭保卫, 荆培培. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征. 作物学报, 2015, 41: 1711–1725
Meng T Y, Xu J W, Shao Z B, Ge M J, Zhang H C, Wei H Y, Dai Q G, Huo Z Y, Xu K, Guo B W, Jing P P. Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series. Acta Agron Sin, 2015, 41: 1711–1725 (in Chinese with English abstract)
[13] 姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学, 2014, 28: 621–631
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y,Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Differences in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River. Chin J Rice Sci, 2014, 28: 621–631 (in Chinese with English abstract)
[14] 花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉, 郭保卫. 双季稻区晚稻”籼改粳”品种筛选. 中国农业科学, 2014, 47: 4582–4594
Hua J, Zhou N B, Zhang J, Zhang H C, Huo Z Y, Zhou P J, Cheng F H, Li G Y, Huang D S, Chen Z P, Chen G L, Dai Q G, Xu K, Wei H Y, Gao H, Guo B W. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area. Sci Agric Sin, 2014, 47: 4582–4594 (in Chinese with English abstract)
[15] 龚金龙, 胡雅杰, 葛梦婕, 龙厚元, 常勇, 马群, 杨雄, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 南方粳型超级稻氮肥群体最高生产力及其形成特征的研究. 核农学报, 2012, 26: 558–572
Gong J L, Hu Y J, Ge M J, Long H Y, Chang Y, Ma Q, Yang X, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y. The highest population productivity of N fertilization and its formation characteristics on japonica super rice in south China. J Nucl Agric Sci, 2012, 26: 558–572 (in Chinese with English abstract)
[16] Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crops Res, 1998, 57: 71–84
[17] 霍中洋, 顾海永, 马群, 杨雄, 李敏, 李国业, 戴其根, 许轲, 魏海燕, 高辉, 芦燕, 张洪程. 不同氮肥群体最高生产力水稻品种的氮素吸收利用差异. 作物学报, 2012, 38: 2061–2068
Huo Z Y, Gu H Y, Ma Q, Yang X, Li M, Li G Y, Dai Q G, Xu K, Wei H Y, Gao H, Lu Y, Zhang H C. Differences of nitrogen absorption and utilization in rice varieties with different productivity levels. Acta Agron Sin, 2012, 38: 2061–2068 (in Chinese with English abstract)
[18] 张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. 作物学报, 2012, 38: 86–98
Zhang H C, Ma Q, Yang X, Li M, Ge M J, Li G Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Liu Y Y. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin, 2012, 38: 86–98 (in Chinese with English abstract)
[19] 徐正进, 陈温福, 张龙步, 王进民, 董克. 从日本超高产品种(系)的选育看粳稻高产的方向. 沈阳农业大学学报, 1991, 22(增刊): 27–33
Xu Z J, Chen W F, Zhang L B, Wang J M, Dong K. Judging the way forward of breeding japonica rice for high-yield from the advance of breeding super-hybrid yield varieties in Japan. Shenyang Agric Univ, 1991, 22(suppl): 27–23 (in Chinese with English abstract)
[20] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43: 266–276
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010, 43: 266–276 (in Chinese with English abstract)
[21] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336–1345
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006, 39: 1336–1345 (in Chinese with English abstract)
[22] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871–879
[23]葛梦婕, 王亚江, 颜希亭, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 江峰, 朱聪聪. 长江中下游稻区粳型超级稻高产形成及氮素利用的研究. 植物营养与肥料学报, 2014, 20: 259–270
Ge M J, Wang Y J, Yan X T, Zhang H C, Wei H Y, Dai Q G, Huo Z Y, Xu K, Jiang F, Zhu C C. Research on the formation of high yield and the nitrogen use of japonica super rice in the middle and lower areas of the Yangtze River. Plant Nutr Fert Sci, 2014, 20: 259–270 (in Chinese with English abstract)
[24]陈爱忠, 潘晓华, 吴建富, 石庆华, 杨上勤. 施氮量对双季超级稻产量、干物质生产及氮素吸收利用的影响. 杂交水稻, 2011, 26(2): 58–63
Chen A Z, Pan X H, Wu J F, Shi Q H, Yang S Q. Effects of nitrogen application amount on yield, dry matter production and N-uptake and utilization of double-cropping super rice. Hybrid Rice, 2011, 26(2): 58–63 (in Chinese)
[25] Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res, 2006, 96: 328–335
[26] 马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. 中国农业科学, 2003, 36: 375–381
Ma J, Zhu Q S, Ma W B, Tian Y H, Yang J C, Zhou K D. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin, 2003, 36: 375–381 (in Chinese with English abstract)
[27] 凌启鸿. 作物群体质量. 上海: 上海科技出版社, 2000. pp 1–210
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 1–210 (in Chinese)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!