欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1656-1665.doi: 10.3724/SP.J.1006.2016.01656

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米籽粒发育相关基因ZmMADS-RIN的克隆及表达分析

夏雪,马晨雨,白青河,冯园园,王顺友,王喜,周青利,席章营*   

  1. 河南农业大学农学院/小麦玉米作物学国家重点实验室,河南郑州450002
  • 收稿日期:2016-02-04 修回日期:2016-06-20 出版日期:2016-11-12 网络出版日期:2016-07-04
  • 通讯作者: 席章营,E-mail:xizhangying@163.com 第一作者联系方式:E-mail:xiaxue282522@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31371629)资助。

Cloning and Expression Analysis of ZmMADS-RIN Gene for Regulating the Kernel Development of Maize

XIA Xue, MA Chen-Yu, BAI Qing-He, FENG Yuan-Yuan, WANG Shun-You, WANG Xi, ZHOU Qing-Li, and XI Zhang-Ying*   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
  • Received:2016-02-04 Revised:2016-06-20 Published:2016-11-12 Published online:2016-07-04
  • Contact: 席章营,E-mail:xizhangying@163.com 第一作者联系方式:E-mail:xiaxue282522@163.com
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31371629).

摘要:

玉米籽粒发育及产量是玉米重要的经济性状。本研究以玉米骨干自交系郑58为试材,采用同源克隆法得到一个与玉米籽粒发育相关的基因ZmMADS-RIN。该基因的cDNA全长859 bp,开放阅读框为768 bp,编码255个氨基酸,与玉米B73中所对应的cDNA的编码区序列相比,共有6个SNPs位点的差异,3个氨基酸残基发生了变化。生物信息学分析表明,ZmMADS-RIN蛋白的相对分子量为29.23 kD,理论等电点(pI)为8.84,是一种亲水性蛋白,不含信号肽序列,也不含跨膜结构;具有5个磷酸化位点;二级结构中含有50.20%的α-螺旋(alpha helix)、27.45%的无规则卷曲(random coil)、14.51%的延伸链(extended strand)和7.84%的β-转角(beta turn);该蛋白位于细胞核内;其氨基酸序列中含有高度保守的MADS结构域、相对保守的K结构域、低保守的I结构域和最不稳定的C结构域,是典型的MIKC型MADS-box蛋白;系统进化树分析表明,ZmMADS-RIN蛋白属于AGL6分枝,与水稻基因OsMADS6的相似性最高,为89%。ZmMADS-RIN基因在玉米自交系郑58的籽粒中特异表达,在根及不同时期的叶片中没有检测到表达信号。荧光定量PCR结果显示,ZmMADS-RIN基因的表达量在玉米籽粒发育的不同阶段呈一定规律的变化,在授粉后0~20 d,呈上调表达趋势,授粉后25 d表达量迅速下降至较低水平,而在授粉后30~40 d则检测不到其表达。推测该基因可能与玉米籽粒的发育有关。

关键词: 玉米, 籽粒发育, ZmMADS-RIN, 基因克隆, RT-PCR

Abstract:

Kernel development is the most important character of maize. In this study, a maize gene named ZmMADS-RIN encoding MADS-box protein relating to kernel development was isolated. The full length cDNA of ZmMADS-RIN is 859 bp, and it contains an open reading frame (ORF) with 768 nucleotides and encodes 255 amino acid residues. The variable analysis of ZmMADS-RIN in coding region showed that six nucleotides and three amino acid residues were different between Zheng 58 and B73. Bioinformatics analyses showed that ZmMADS-RIN was a hydrophilic protein with a molecular weight of 29.23 kD, a theoretical isoelectric point of 8.84, and five phosphorylation sites, but signal peptide sequence and transmembrane domain were not found. The secondary structure of ZmMADS-RIN protein contained 50.20% of alpha helix, 27.45% of random coil, 14.51% of extended strand and 7.84% of beta turn. ZmMADS-RIN protein was tested to be a typical MIKC-type protein localized in nucleus with highly conserved MADS domain, relatively conserved K domain, less weakly conserved I domain and most variable C domain. Phylogenetic analysis indicated that ZmMADS-RIN protein belongs to the same branch of AGL6, and shows high similarity of 89% to OsMADS6 protein from Oryza sativa. RT-PCR results showed that ZmMADS-RIN expressed in kernel specially, and not in root or leaf during different phases. In addition, qRT-PCR results indicated that the expression of ZmMADS-RIN increased continually from zero day to 20 days after pollination, and reached the highest level at the 20th day, then decreased significantly. And it could not be detected during 30th?40th days. These results demonstrated that ZmMADS-RIN might be associated with the regulation of developing kernel in maize.

Key words: Maize, Kerneldevelopment, ZmMADS-RIN, Genecloning, RT-PCR

[1]NgM,YanofskyMF.FunctionandevolutionoftheplantMADS-boxgenefamily.NatRevGenet,2001,2:186–195 [2]Alvarez-BuyllaER,LiljegrenSJ,PelazS,GoldSE,BurgeffC,DittaGS,Vergara-SilvaF,YanofskyMF.MADS-boxgeneevolutionbeyondflowers:expressioninpollen,endosperm,guardcells,rootsandtrichomes.PlantJ,2000,24:457–466 [3]deBodtS,RaesJ,FlorquinK,RombautsS,RouzéP,Thei?enG,VandePeerY.GenomewidestructuralannotationandevolutionaryanalysisofthetypeIMADS-boxgenesinplants.JMolEvol,2003,56:573–586 [4]ZhangZB,LiHY,ZhangDF,LiuYH,FuJ,ShiYS,SongYC,WangTY,LiY.CharacterizationandexpressionanalysisofsixMADS-boxgenesinmaize(ZeamaysL.).JPlantPhysiol,2012,169:797–806 [5]LesebergCH,EisslerCL,WangX,JohnsMA,DuvallMR,MaoL.InteractionstudyofMADS-domainproteinsintomato.JExpBot,2008,59:2253–2265 [6]ShuYJ,YuDS,WangD,GuoDL,GuoCH.Genome-widesurveyandexpressionanalysisoftheMADS-boxgenefamilyinsoybean.MolBiolRep,2013,40:3901–3911 [7]BeckerA,Thei?enG.ThemajorcladesofMADS-boxgenesandtheirroleinthedevelopmentandevolutionoffloweringplants.MolPhylogenetEvol,2003,29:464–489 [8]KuAT,HuangYS,WangYS,MaDF,YehKW.IbMADS1(IpomoeabatatasMADS-box1gene)isinvolvedintuberousrootinitiationinsweetpotato(Ipomoeabatatas).AnnBot,2008,102:57–67 [9]BenllochR,RoqueE,FerrándizC,CossonV,CaballeroT,PenmetsaRV,BeltránJP,Ca?asLA,RatetP,Madue?oF.AnalysisofBfunctioninlegumes:PISTILLATAproteinsdonotrequirethePImotifforfloralorgandevelopmentinMedicagotruncatula.PlantJ,2009,60:102–111 [10]FerrarioS,ShchennikovaAV,FrankenJ,ImminkRGH,AngenentGC.ControloffloralmeristemdeterminacyinpetuniabyMADS-boxtranscriptionfactors.PlantPhysiol,2006,140:890–898 [11]韩利涛,姜伟,杨守萍,喻德跃,盖钧镒.大豆细胞质雄性不育系MADS-box基因的分离分析.作物学报,2010,36:905–910 HanLT,JiangW,YangSP,YuDY,GaiJY.IsolationandanalysisofMADS-boxgenefromsoybean(GlycinemaxL.Merr)cytoplasmicmalesterileline.ActaAgronSin,2010,36:905–910(inChinesewithEnglishabstract) [12]KaufmannK,Mui?oJM,JaureguiR,AiroldiCA,SmaczniakC,KrajewskiP,AngenentGC.TargetgenesoftheMADStranscriptionfactorSEPALLATA3:IntegrationofdevelopmentalandhormonalpathwaysintheArabidopsisflower.PLoSBiol,2009,7:854–875 [13]MichaelsSD,DittaG,Gustafson-BrownC,PelazS,YanofskyM,AmasinoRM.AGL24actsasapromoteroffloweringinArabidopsisandispositivelyregulatedbyvernalization.PlantJ,2003,33:867–874 [14]MaraCD,IrishVF.TwoGATAtranscriptionfactorsaredownstreameffectorsoffloralhomeoticgeneactioninArabidopsis.PlantPhysiol,2008,147:707–718 [15]汪潇琳,陈艳萍,喻德跃.MADS-box基因GmAGL15在大豆种子发育过程中的表达.作物学报,2008,34:330–332 WangXL,ChenYP,YuDY.ExpressionoftheMADS-boxgeneGmAGL15inseeddevelopmentofsoybean.ActaAgronSin,2008,34:330–332(inChinesewithEnglishabstract) [16]ItoY,KitagawaM,IhashiN,YabeK,KimbaraJ,YasudaJ,ItoH,InakumaT,HiroiS,KasumiT.DNA-bindingspecificity,transcriptionalactivationpotential,andtherinmutationeffectforthetomatofruit-ripeningregulatorRIN.PlantJ,2008,55:212–223 [17]VrebalovJ,RuezinskyD,PadmanabhanV,WhiteR,MedranoD,DrakeR,SchuchW,GiovannoniJ.AMADS-boxgenenecessaryforfruitripeningatthetomatoRipening-Inhibitor(Rin)locus.Science,2002,296:343–346 [18]BattagliaR,BrambillaV,ColomboL,StuitjeAR,KaterMM.FunctionalanalysisofMADS-boxgenescontrollingovuledevelopmentinArabidopsisusingtheethanol-induciblealcgene-expressionsystem.MechanismsDevelopment,2006,123:267–276 [19]MoyleR,FairbairnDJ,RipiJ,CroweM,BotellaJR.Developingpineapplefruithasasmalltranscriptomedominatedbymetallothionein.JExpBot,2005,56:101–112 [20]DreniL,JacchiaS,FornaraF,FornariM,OuwerkerkPBF,AnG,ColomboL,KaterMM.TheD-lineageMADS-boxgeneOsMADS13controlsovuleidentityinrice.PlantJ,2007,52:690–699 [21]MazzucatoA,OlimpieriI,SiligatoF,PicarellaME,SoressiGP.CharacterizationofgenescontrollingstamenidentityanddevelopmentinaparthenocarpictomatomutantindicatesarolefortheDEFICIENSorthologinthecontroloffruitset.PhysiolPlant,2008,132:526–537 [22]刘菊华,徐碧玉,张静,金志强.MADS-box转录因子的相互作用及对果实发育和成熟的调控.遗传,2010,32:893–902 LiuJH,XuBY,ZhangJ,JinZQ.TheinteractionofMADS-boxtranscriptionfactorsandmanipulatingfruitdevelopmentandripening.Hereditas,2010,32:893–902(inChinesewithEnglishabstract) [23]ColomboM,MasieroS,VanzulliS,LardelliP,KaterMM,ColomboL.AGL23,atypeIMADS-boxgenethatcontrolsfemalegametophyteandembryodevelopmentinArabidopsis.PlantJ,2008,54:1037–1048 [24]DinnenyJR,WeigelD,YanofskyMF.AgeneticframeworkforfruitpatterninginArabidopsisthaliana.Development,2005,132:4687–4696 [25]SeymourGB,RyderCD,CevikV,HammondJP,PopovichA,KingGJ,VrebalovJ,GiovannoniJJ,ManningK.ASEPALLATAgeneisinvolvedinthedevelopmentandripeningofstrawberry(Fragaria×ananassaDuch.)fruit,anonclimacterictissue.JExpBot,2011,62:1179–1188 [26]周厚成,李刚,赵霞,康兆茹,郭蔼光.森林草莓全基因组MADS-box转录因子基因的鉴定及凤梨草莓果实FaMADS1基因克隆.植物生理学报,2014,50:1630–1638 ZhouHC,LiG,ZhaoX,KangZR,GuoAG.Genome-widesequenceidentificationofMADS-boxtranscriptionfactorgenefamilyfromFragariavescaandcloningofFaMADS1genefromF.ananassafruit.PlantPhysiolJ,2014,50:1630–1638(inChinesewithEnglishabstract) [27]FerrándizC,LiljegrenSJ,YanofskyMF.NegativeregulationoftheSHATTERPROOFgenesbyFRUITFULLduringArabidopsisfruitdevelopment.Science,2000,289:436–438 [28]LiljegrenSJ,DittaGS,EshedY,SavidgeB,BowmanJL,YanofskyMF.SHATTERPROOFMADS-boxgenescontrolseeddispersalinArabidopsis.Nature,2000,404:766–770 [29]DongTT,HuZL,DengL,WangY,ZhuMK,ZhangJL,ChenGP.AtomatoMADS-boxtranscriptionfactor,SlMADS1,actsasanegativeregulatoroffruitripening.PlantPhysiol,2013,163:1026–1036 [30]MünsterT,DeleuW,WingenLU,OuzunovaM,CacharrónJ,FaiglW,WerthS,KimJTT,SaedlerH,Thei?enG.MaizeMADS-boxgenesgalore.Maydica,2002,47:287–301 [31]MalcomberST,KelloggEA.HeterogeneousexpressionpatternsandseparaterolesoftheSEPALLATAgeneLEAFYHULLSTERILE1ingrasses.PlantCell,2004,16:1692–1706 [32]ThompsonBE,BartlingL,WhippleC,HallDH,SakaiH,SchmidtR,HakeS.bearded-earencodesaMADSboxtranscriptionfactorcriticalformaizefloraldevelopment.PlantCell,2009,21:2578–2590 [33]Lopez-DeeZP,WittichP,PèME,RigolaD,BuonoID,GorlaMS,KaterMM,ColomboL.OsMADS13,anovelriceMADS-boxgeneexpressedduringovuledevelopment.DevGenet,1999,25:237–244 [34]MooreS,VrebalovJ,PaytonP,GiovannoniJ.Useofgenomicstoolstoisolatekeyripeninggenesanalysefruitmaturationintomato.JExpBot,2002,53:2023–2030 [35]DongTT,ChenGP,TianSB,XieQL,YinWC,ZhangYJ,HuZL.Anon-climactericfruitgeneCaMADS-RINregulatesfruitripeningandethylenebiosynthesisinclimactericfruit.PLoSOne,2014,9:e95559 [36]WangL,YinXJ,ChengCX,WangH,GuoRR,XuXZ,ZhaoJ,ZhengY,WangXP.EvolutionaryandexpressionanalysisofaMADS-boxgenesuperfamilyinvolvedinovuledevelopmentofseededandseedlessgrapevines.MolGenetGenomics,2015,290:825–846 [37]LiuJH,XuBY,HuLF,LiMY,SuW,WuJ,YangJH,JinZQ.InvolvementofabananaMADS-boxtranscriptionfactorgeneinethyleneinducedfruitripening.PlantCellRep,2009,28:103–111 [38]WangXT,WuLJ,ZhangSF,WuLC,KuLX,WeiXM,XieLL,ChenYH.RobustexpressionandassociationofZmCCA1withcircadian.PlantCellRep,2011,30:1261–1272 [39]RajeevanMS,RanamukhaarachiDG,VernonSD,UngerER.Useofreal-timequantitativePCRtovalidatetheresultsofcDNAarrayanddifferentialdisplayPCRtechnologies.Methods,2001,25:443–451 [40]ZhangJ,NallamilliBR,MujahidH,PengZH.OsMADS6playsanessentialroleinendospermnutrientaccumulationandissubjecttoepigeneticregulationinrice(Oryzasativa).PlantJ,2010,64:604–617 [41]LeeS,KimJ,SonJS,NamJ,JeongDH,LeeK,JangS,YooJ,LeeJ,LeeDY,KangHG,AnG.SystematicreversegeneticscreeningofT-DNAtaggedgenesinriceforfunctionalgenomicanalyses:MADS-boxgenesasatestcase.PlantCellPhysiol,2003,44:1403–1411 [42]BusiVM,BustamanteC,AngeloCD,Hidalgo-CuevasM,BoggioSB,ValleEM,ZabaletaE.MADS-boxgenesexpressedduringtomatoseedandfruitdevelopment.PlantMolBiol,2003,52:801–815 [43]张冬梅,刘洋,赵永锋,祝丽英,黄亚群,郭晋杰,陈景堂.不同杂种优势群玉米籽粒灌浆速率分析.中国农业科学,2014,47:3323–3335 ZhangDM,LiuY,ZhaoYF,ZhuLY,HuangYQ,GuoJJ,ChenJT.Analysisofmaizegrainfillingrateindifferentheteroticgroups.SciAgricSin,2014,47:3323–3335(inChinesewithEnglishabstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[9] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!